Abstract

The relative Stokes vectors at the detector exit port of a sandblasted and gold-plated integrating sphere are determined for four different polarizations incident on five unique surfaces. The results indicate in all cases that the integrating sphere is a depolarizer. These results validate assumptions used in hard-target calibration methodology for infrared lidars.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
    [CrossRef] [PubMed]
  2. M. J. Kavaya, “Polarization effects on hard target calibration of lidar systems,” Appl. Opt. 26, 796–804 (1987).
    [CrossRef] [PubMed]
  3. D. G. Goebel, “Generalized integrating sphere theory,” Appl. Opt. 6, 125–128 (1967).
    [CrossRef] [PubMed]
  4. G. J. Kneissel, J. C. Richmond, “A laser-source integrating sphere reflectometer,” Natl. Bur. Stand. Tech. Note 439, 5–25 (1968).
  5. R. Anderson, “Polarized light, the integrating sphere and target calibration,” Appl. Opt. 29, 4235–4240 (1990).
    [CrossRef] [PubMed]
  6. M. W. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
    [CrossRef]
  7. D. A. Haner, R. T. Menzies, “Reflectance characteristics of reference materials used in hard target calibrations,” Appl. Opt. 28, 857–864 (1989).
    [CrossRef] [PubMed]
  8. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement, (Pergamon, Oxford, 1971), Chap. 4, pp. 118–131.
  9. W. W. Welford, R. Winston, The Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, New York, 1978), Chap. 1, pp. 1–6.
  10. K. A. Snail, L. M. Hanssen, “Integrating sphere designs with isotropic throughput,” Appl. Opt. 28, 1793–1799 (1989).
    [CrossRef] [PubMed]

1990 (1)

1989 (2)

1987 (1)

1983 (1)

1970 (1)

M. W. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
[CrossRef]

1968 (1)

G. J. Kneissel, J. C. Richmond, “A laser-source integrating sphere reflectometer,” Natl. Bur. Stand. Tech. Note 439, 5–25 (1968).

1967 (1)

Anderson, R.

Clarke, D.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement, (Pergamon, Oxford, 1971), Chap. 4, pp. 118–131.

Finkel, M. W.

M. W. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
[CrossRef]

Flamant, P. H.

Goebel, D. G.

Grainger, J. F.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement, (Pergamon, Oxford, 1971), Chap. 4, pp. 118–131.

Haner, D. A.

Hanssen, L. M.

Kavaya, M. J.

Kneissel, G. J.

G. J. Kneissel, J. C. Richmond, “A laser-source integrating sphere reflectometer,” Natl. Bur. Stand. Tech. Note 439, 5–25 (1968).

Menzies, R. T.

Oppenheim, U. P.

Richmond, J. C.

G. J. Kneissel, J. C. Richmond, “A laser-source integrating sphere reflectometer,” Natl. Bur. Stand. Tech. Note 439, 5–25 (1968).

Snail, K. A.

Welford, W. W.

W. W. Welford, R. Winston, The Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, New York, 1978), Chap. 1, pp. 1–6.

Winston, R.

W. W. Welford, R. Winston, The Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, New York, 1978), Chap. 1, pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Polarimeter configuration for measurements of Stokes components of radiation exiting the integrating sphere.

Fig. 2
Fig. 2

Layout of the key elements in the integrating sphere and polarimeter–detector optical system.

Tables (2)

Tables Icon

Table 1 Stokes Components of Integrating Sphere Throughputa

Tables Icon

Table 2 Normalized Integrating Sphere Signals for Various Target Materials at 45° Target Anglea

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β ( R b ) = P b ( t ) E t b E t s I s ρ * O ( R s ) O ( R b ) 2 c R b 2 R s 2 exp [ 2 0 R s α s ( R ) d R ] exp [ 2 0 R b α b ( R ) d R ] ,
ρ * ( FT , L B , h H ) = G ( FT , MR , h H ) G ( TT , MR , h H ) + G ( TT , MR , h V ) G ( TT , IS , h U ) G ( ST , IS , h U ) , ρ ( ST , IS , h U ) k 1 k 2 cos ϕ / π
I ( α , β , Δ ) = ½ { I + M [ cos 2 β cos 2 ( α β ) cos Δ sin 2 β sin 2 ( α β ) ] + C [ sin 2 β cos 2 ( α β ) + cos Δ cos 2 β sin 2 ( α β ) ] + S sin Δ sin 2 ( α β ) } .

Metrics