## Abstract

The relative Stokes vectors at the detector exit port of a sandblasted and gold-plated integrating sphere are determined for four different polarizations incident on five unique surfaces. The results indicate in all cases that the integrating sphere is a depolarizer. These results validate assumptions used in hard-target calibration methodology for infrared lidars.

© 1993 Optical Society of America

Full Article |

PDF Article
### Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\beta ({R}_{b})=\frac{{P}_{b}(t)}{{E}_{tb}}\phantom{\rule{0.2em}{0ex}}\frac{{E}_{ts}}{{I}_{s}}\rho *\frac{O\phantom{\rule{0.1em}{0ex}}({R}_{s})}{O\phantom{\rule{0.1em}{0ex}}({R}_{b})\phantom{\rule{0.2em}{0ex}}}\frac{2}{c}\phantom{\rule{0.2em}{0ex}}\frac{{{R}_{b}}^{2}}{{{R}_{s}}^{2}}\cdot \frac{exp\left[-2{\mathit{\int}}_{0}^{{R}_{s}}\phantom{\rule{0.2em}{0ex}}{\alpha}_{s}({R}^{\prime})\phantom{\rule{0.1em}{0ex}}\text{d}{R}^{\prime}\right]}{exp\left[-2{\mathit{\int}}_{0}^{{R}_{b}}{\alpha}_{b}({R}^{\prime})\phantom{\rule{0.1em}{0ex}}\text{d}{R}^{\prime}\right]}\phantom{\rule{0.2em}{0ex}},$$
(2)
$$\begin{array}{ll}\rho *(\text{FT},LB,hH)=& \frac{G\phantom{\rule{0.1em}{0ex}}(\text{FT},\phantom{\rule{0.2em}{0ex}}\text{MR},\phantom{\rule{0.2em}{0ex}}hH)}{G\phantom{\rule{0.1em}{0ex}}(\text{TT},\phantom{\rule{0.2em}{0ex}}\text{MR},\phantom{\rule{0.2em}{0ex}}hH)\phantom{\rule{0.2em}{0ex}}+\phantom{\rule{0.2em}{0ex}}G\phantom{\rule{0.1em}{0ex}}(\text{TT},\phantom{\rule{0.2em}{0ex}}\text{MR},\phantom{\rule{0.2em}{0ex}}hV)}\\ & \cdot \frac{G\phantom{\rule{0.1em}{0ex}}(\text{TT},\phantom{\rule{0.2em}{0ex}}\text{IS},\phantom{\rule{0.2em}{0ex}}hU)}{G\phantom{\rule{0.1em}{0ex}}(\text{ST},\phantom{\rule{0.2em}{0ex}}\text{IS},\phantom{\rule{0.2em}{0ex}}hU)}\phantom{\rule{0.2em}{0ex}},\\ & \cdot \rho (\text{ST},\phantom{\rule{0.2em}{0ex}}\text{IS},\phantom{\rule{0.2em}{0ex}}hU){k}_{1}{k}_{2}cos\varphi \phantom{\rule{0em}{0ex}}/\phantom{\rule{0em}{0ex}}\pi \end{array}$$
(3)
$$\begin{array}{ll}{I}^{\prime}(\alpha ,\beta ,\Delta )=& \xbd\{I+M[\phantom{\rule{0em}{0ex}}cos2\phantom{\rule{0em}{0ex}}\beta cos2\phantom{\rule{0.1em}{0ex}}(\phantom{\rule{0em}{0ex}}\alpha -\beta \phantom{\rule{0em}{0ex}})\\ & -cos\Delta sin2\phantom{\rule{0em}{0ex}}\beta sin2\phantom{\rule{0.1em}{0ex}}(\phantom{\rule{0em}{0ex}}\alpha -\beta \phantom{\rule{0em}{0ex}})]\\ & \phantom{\rule{0.2em}{0ex}}+C[sin2\phantom{\rule{0em}{0ex}}\beta cos2\phantom{\rule{0.1em}{0ex}}(\phantom{\rule{0em}{0ex}}\alpha -\beta \phantom{\rule{0em}{0ex}})\\ & \phantom{\rule{0.2em}{0ex}}+cos\Delta cos2\phantom{\rule{0em}{0ex}}\beta sin2\phantom{\rule{0.1em}{0ex}}(\phantom{\rule{0em}{0ex}}\alpha -\beta \phantom{\rule{0em}{0ex}})\phantom{\rule{0.2em}{0ex}}]\\ & \phantom{\rule{0.2em}{0ex}}+Ssin\Delta sin2\phantom{\rule{0.1em}{0ex}}(\phantom{\rule{0em}{0ex}}\alpha -\beta \phantom{\rule{0em}{0ex}})\phantom{\rule{0.2em}{0ex}}\}\phantom{\rule{0.2em}{0ex}}.\end{array}$$