Abstract

A technique for the external frequency translation of light waves is reported. The technique permits the stepwise sweeping of an optical frequency over a wide range with high linearity with respect to time. The frequency translator is composed of an optical pulse modulator and an optical ring circuit containing an acousto-optic frequency shifter and an optical amplifier. The pulse launched into the ring circuit undergoes a constant frequency shift for each circulation around the circuit and the frequency can be translated to a considerable degree from that of the original input pulse. We report a stepwise frequency translation over approximately 68 GHz for a 1.5-μm light wave with a strictly constant frequency-sweep rate and an approximately constant intensity.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nosu, H. Toba, K. Iwashita, “Optical FDM transmission technique,” J. Lightwave Technol. LT-5, 1301–1308 (1987).
    [Crossref]
  2. H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength division multiplexing technology and its application,” J. Lightwave Technol. LT-2, 448–463 (1984).
    [Crossref]
  3. W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
    [Crossref]
  4. H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. LT-7, 3–10 (1989).
    [Crossref]
  5. M. D. Levenson, S. S. Kano, “Introduction to Nonlinear Laser Spectroscopy,” (Academic Press, San Diego, Calif., 1988).
  6. P. L. Fuhr, D. N. Maynard, D. L. Kunkel, “Laser diode frequency sweeping techniques for fiber optic sensors and systems,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 114–124 (1989).
  7. Y. Yoshikuni, G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping-suppressed amplitude modulation,” J. Lightwave Technol. LT-5, 516–522 (1987).
    [Crossref]
  8. T. G. Hodgkinson, P. Coppin, “Pulsed operation of an optical feedback frequency synthesizer,” Electron. Lett. 26, 1155–1157 (1990).
    [Crossref]
  9. K. Shimizu, T. Horiguchi, Y. Koyamada, “Technique for translating light wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett. 17, 1307–1309 (1992).
    [Crossref] [PubMed]
  10. A. Yariv, Quantum Electronics, 3rd ed., (Wiley, New York, 1988) pp. 560–565.
  11. K. Shimizu, T. Horiguchi, Y. Koyamada, “Measurement of Rayleigh backscattering in single mode fibers based on coherent OFDR employing a DFB laser diode,” IEEE Photon Technol. Lett. 3, 1039–1041 (1991).
    [Crossref]
  12. W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
    [Crossref]
  13. K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

1992 (1)

1991 (1)

K. Shimizu, T. Horiguchi, Y. Koyamada, “Measurement of Rayleigh backscattering in single mode fibers based on coherent OFDR employing a DFB laser diode,” IEEE Photon Technol. Lett. 3, 1039–1041 (1991).
[Crossref]

1990 (2)

W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
[Crossref]

T. G. Hodgkinson, P. Coppin, “Pulsed operation of an optical feedback frequency synthesizer,” Electron. Lett. 26, 1155–1157 (1990).
[Crossref]

1989 (1)

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. LT-7, 3–10 (1989).
[Crossref]

1987 (2)

Y. Yoshikuni, G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping-suppressed amplitude modulation,” J. Lightwave Technol. LT-5, 516–522 (1987).
[Crossref]

K. Nosu, H. Toba, K. Iwashita, “Optical FDM transmission technique,” J. Lightwave Technol. LT-5, 1301–1308 (1987).
[Crossref]

1984 (1)

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength division multiplexing technology and its application,” J. Lightwave Technol. LT-2, 448–463 (1984).
[Crossref]

1981 (1)

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Barfuss, H.

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. LT-7, 3–10 (1989).
[Crossref]

Brinkmeyer, E.

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. LT-7, 3–10 (1989).
[Crossref]

Coppin, P.

T. G. Hodgkinson, P. Coppin, “Pulsed operation of an optical feedback frequency synthesizer,” Electron. Lett. 26, 1155–1157 (1990).
[Crossref]

Donald, D. K.

W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
[Crossref]

Eickhoff, W.

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Freundorfer, A. P.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Fuhr, P. L.

P. L. Fuhr, D. N. Maynard, D. L. Kunkel, “Laser diode frequency sweeping techniques for fiber optic sensors and systems,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 114–124 (1989).

Fujii, S.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Hodgkinson, T. G.

T. G. Hodgkinson, P. Coppin, “Pulsed operation of an optical feedback frequency synthesizer,” Electron. Lett. 26, 1155–1157 (1990).
[Crossref]

Horiguchi, T.

K. Shimizu, T. Horiguchi, Y. Koyamada, “Technique for translating light wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett. 17, 1307–1309 (1992).
[Crossref] [PubMed]

K. Shimizu, T. Horiguchi, Y. Koyamada, “Measurement of Rayleigh backscattering in single mode fibers based on coherent OFDR employing a DFB laser diode,” IEEE Photon Technol. Lett. 3, 1039–1041 (1991).
[Crossref]

Iizuka, K.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Imai, Y.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Ishio, H.

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength division multiplexing technology and its application,” J. Lightwave Technol. LT-2, 448–463 (1984).
[Crossref]

Iwashita, K.

K. Nosu, H. Toba, K. Iwashita, “Optical FDM transmission technique,” J. Lightwave Technol. LT-5, 1301–1308 (1987).
[Crossref]

Kano, S. S.

M. D. Levenson, S. S. Kano, “Introduction to Nonlinear Laser Spectroscopy,” (Academic Press, San Diego, Calif., 1988).

Koyamada, Y.

K. Shimizu, T. Horiguchi, Y. Koyamada, “Technique for translating light wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett. 17, 1307–1309 (1992).
[Crossref] [PubMed]

K. Shimizu, T. Horiguchi, Y. Koyamada, “Measurement of Rayleigh backscattering in single mode fibers based on coherent OFDR employing a DFB laser diode,” IEEE Photon Technol. Lett. 3, 1039–1041 (1991).
[Crossref]

Kunkel, D. L.

P. L. Fuhr, D. N. Maynard, D. L. Kunkel, “Laser diode frequency sweeping techniques for fiber optic sensors and systems,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 114–124 (1989).

Lames, R.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Levenson, M. D.

M. D. Levenson, S. S. Kano, “Introduction to Nonlinear Laser Spectroscopy,” (Academic Press, San Diego, Calif., 1988).

Maynard, D. N.

P. L. Fuhr, D. N. Maynard, D. L. Kunkel, “Laser diode frequency sweeping techniques for fiber optic sensors and systems,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 114–124 (1989).

Minowa, J.

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength division multiplexing technology and its application,” J. Lightwave Technol. LT-2, 448–463 (1984).
[Crossref]

Motosugi, G.

Y. Yoshikuni, G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping-suppressed amplitude modulation,” J. Lightwave Technol. LT-5, 516–522 (1987).
[Crossref]

Nazarathy, M.

W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
[Crossref]

Newton, S. A.

W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
[Crossref]

Nosu, K.

K. Nosu, H. Toba, K. Iwashita, “Optical FDM transmission technique,” J. Lightwave Technol. LT-5, 1301–1308 (1987).
[Crossref]

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength division multiplexing technology and its application,” J. Lightwave Technol. LT-2, 448–463 (1984).
[Crossref]

Shimizu, K.

K. Shimizu, T. Horiguchi, Y. Koyamada, “Technique for translating light wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett. 17, 1307–1309 (1992).
[Crossref] [PubMed]

K. Shimizu, T. Horiguchi, Y. Koyamada, “Measurement of Rayleigh backscattering in single mode fibers based on coherent OFDR employing a DFB laser diode,” IEEE Photon Technol. Lett. 3, 1039–1041 (1991).
[Crossref]

Sorin, W. V.

W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
[Crossref]

Toba, H.

K. Nosu, H. Toba, K. Iwashita, “Optical FDM transmission technique,” J. Lightwave Technol. LT-5, 1301–1308 (1987).
[Crossref]

Ulrich, R.

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Wong, R.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed., (Wiley, New York, 1988) pp. 560–565.

Yoshikuni, Y.

Y. Yoshikuni, G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping-suppressed amplitude modulation,” J. Lightwave Technol. LT-5, 516–522 (1987).
[Crossref]

Appl. Phys. Lett. (1)

W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693–695 (1981).
[Crossref]

Electron. Lett. (1)

T. G. Hodgkinson, P. Coppin, “Pulsed operation of an optical feedback frequency synthesizer,” Electron. Lett. 26, 1155–1157 (1990).
[Crossref]

IEEE Photon Technol. Lett. (2)

K. Shimizu, T. Horiguchi, Y. Koyamada, “Measurement of Rayleigh backscattering in single mode fibers based on coherent OFDR employing a DFB laser diode,” IEEE Photon Technol. Lett. 3, 1039–1041 (1991).
[Crossref]

W. V. Sorin, D. K. Donald, S. A. Newton, M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon Technol. Lett. 2, 902–904 (1990).
[Crossref]

J. Lightwave Technol. (4)

Y. Yoshikuni, G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping-suppressed amplitude modulation,” J. Lightwave Technol. LT-5, 516–522 (1987).
[Crossref]

K. Nosu, H. Toba, K. Iwashita, “Optical FDM transmission technique,” J. Lightwave Technol. LT-5, 1301–1308 (1987).
[Crossref]

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength division multiplexing technology and its application,” J. Lightwave Technol. LT-2, 448–463 (1984).
[Crossref]

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. LT-7, 3–10 (1989).
[Crossref]

Opt. Lett. (1)

Other (4)

A. Yariv, Quantum Electronics, 3rd ed., (Wiley, New York, 1988) pp. 560–565.

M. D. Levenson, S. S. Kano, “Introduction to Nonlinear Laser Spectroscopy,” (Academic Press, San Diego, Calif., 1988).

P. L. Fuhr, D. N. Maynard, D. L. Kunkel, “Laser diode frequency sweeping techniques for fiber optic sensors and systems,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 114–124 (1989).

K. Iizuka, Y. Imai, A. P. Freundorfer, R. Lames, R. Wong, S. Fujii, “Optical step frequency reflectometry,” 460 (1990) in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990) p. 460.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Arrangement and operation of the frequency translator: a, basic configuration of the proposed frequency translator; b, synchronous control of the AO frequency shifter and the pulse modulator; c, repetition of the stepwise frequency sweep.

Fig. 2
Fig. 2

Experimental configuration of the frequency translator and the setup for frequency-shift measurement.

Fig. 3
Fig. 3

Method for ASE-noise power estimation; i, circulation number.

Fig. 4
Fig. 4

Cw output profiles of the ring circuit for a, the initial section of the profile; and b, the whole profile. The pulse width is 6 μs, and the period is 600 μs.

Fig. 5
Fig. 5

Cw output profiles under the best polarization states. Solid and dashed curves represent the total pulse power and the ASE noise, respectively; the BPF bandwidth is 128 GHz: a, 1.2-μs pulse width and 600-μs period; b, 6 μs pulse width and 3 ms period; c, 50 μs pulse width and 20 ms period.

Fig. 6
Fig. 6

Cw output profiles for a 1.2-μs pulse width when operating under the worst polarization state. The solid and dashed curves represent the total pulse power and the ASE noise, respectively. The BPF bandwidth is 128 GHz.

Fig. 7
Fig. 7

Cw output profiles for a 1.5-μs pulse width and 1.5-ms period when operating under the best polarization state. The solid and dashed curves represent the total pulse power and the ASE noise, respectively. The BPF bandwidth is 384 GHz.

Fig. 8
Fig. 8

Frequency shift measured on the rf spectrum analyzer. The center frequency is 5.83 GHz, and the horizontal scale is 620 MHz/division: (a) frequency shift of 5.68 GHz for 71 circulations, (b) frequency shift of 6.96 GHz for 87 circulations.

Fig. 9
Fig. 9

Relationship between the frequency shift and the delay time.

Fig. 10
Fig. 10

Spectra of (a) the erbium-laser lightwave and (b) the recirculated pulse after 150 circulations.

Fig. 11
Fig. 11

Wavelength spectra for extracted pulses. The initial position at 1534.6 nm is indicated by the solid lines: spectra for the recirculated signal pulses after nearly (a) 270 circulations, (b) 540 circulations, (c) 810 circulations, and (d) 1000 circulations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν r ( 1 t c r 1 t a ) 1 / 2 .
t c = l υ A ,

Metrics