Abstract

The availability of new nonlinear optical materials such as AgGaS2 and AgGaSe2 and improvements in compact, tunable, pulsed and continuous-wave (cw) solid-state pump lasers now make it possible to generate tunable, infrared narrow-band coherent radiation over a wide wavelength range (4–18 μm) by means of difference–frequency generation (DFG). This article describes the wavelength and output-power characteristics of a tunable infrared source based on AgGaSe2 and certain proven cw near-infrared pump sources for application to high-resolution spectroscopy.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, “Color center lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 225–277.
  2. R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1989).
    [CrossRef]
  3. S. C. Hsu, R. H. Schwendeman, G. Magerl, “Infrared microwave sideband laser spectroscopy in the CO laser region,” IEEE J. Quantum Electron. 24, 2294–2301 (1988).
    [CrossRef]
  4. A. S. Pine, “Doppler-limited molecular spectroscopy by difference–frequency mixing,” J. Opt. Soc. Am. 64, 1683–1690 (1974).
    [CrossRef]
  5. M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200–6205 (1990);L. W. Xu, C. Gabrys, T. Oka, “Observation of the 2ν2(I = 2) ← overtone band of H3+,” J. Chem. Phys. 93, 6210–6215 (1990).
    [CrossRef]
  6. P. Canarelli, Z. Benko, R. F. Curl, F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference–frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992);A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, F. K. Tittel, “Optimization of a mid-infrared high-resolution difference frequency laser spectrometer,” J. Opt. Soc. Am. B 9, 1962–1967 (1992).
    [CrossRef]
  7. D. N. Nikogosyan, “Nonlinear optics crystals (review and summary of data,” Sov. J. Quantum Electron. 7, 1–13 (1977).
    [CrossRef]
  8. R. S. Feigelson, R. K. Route, “Recent developements in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113–119 (1987).
  9. G. Catella, Cleveland Crystal Inc., Cleveland, Ohio 44117 (personal communication, 1992).
  10. G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
    [CrossRef]
  11. B. C. Ziegler, K. L. Schepler, “Transmission and damage-threshold measurement in AgGaSe2 at 2.1 μm,” Appl. Opt. 30, 5077–5080 (1991);H. Kildal, G. W. Iseler, “Laser-induced surface damage of infrared nonlinear materials,” Appl. Opt. Lett. 15, 3062–3065 (1976).
    [CrossRef] [PubMed]
  12. P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.
  13. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
    [CrossRef]
  14. N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
    [CrossRef]
  15. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
    [CrossRef]
  16. H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaS2,” Opt. Commun. 9, 315–318 (1973).
    [CrossRef]
  17. V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989);T. J. Carrig, C. R. Pollock, “Tunable cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1992).
    [CrossRef] [PubMed]
  18. A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.
  19. K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.
  20. C. E. Wieman, L. W. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991);W. Fuhrmann, W. Demtröder, “A continuously tunable GaAs diode laser with an external resonator,” Appl. Phys. B 49, 29–32 (1989).
    [CrossRef]
  21. S. Q. Shang, H. J. Metcalf, “Narrow, high-power light from diode lasers,” Appl. Opt. 28, 1618–1623 (1989);J. R. Andrews, G. L. Schuster, “High-power and high-spatial-coherence broad-area power amplifier,” Opt. Lett. 16, 913–915 (1991);L. Goldberg, D. Mehuys, D. C. Hall, “3.3 W cw diffraction-limited broad area semiconductor amplifier,” Electron. Lett. 28, 1082–1083 (1992).
    [CrossRef] [PubMed]
  22. A. Mooradian, MIT and Micracor, Acton, Mass. 01720 (personal communication, 1993).
  23. G. J. Dixon, C. E. Tanner, C. E. Wieman, “432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity,” Opt. Lett. 14, 731–733 (1989);W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, “Generation of 41 mW blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1989).
    [CrossRef] [PubMed]
  24. L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
    [CrossRef]
  25. W. P. Risk, W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum–frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707–709 (1992).
    [CrossRef] [PubMed]
  26. K. Sugiyama, J. Yoda, T. Sakurai, “Generation of continuous-wave ultraviolet light by sum–frequency mixing of diode-laser and argon-ion-laser radiation in β-BaB2O4,” Opt. Lett. 16, 449–451 (1991).
    [CrossRef] [PubMed]
  27. U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Cure, F. K. Tittel, “Difference-frequency generation in AgGaS2 by using single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
    [CrossRef] [PubMed]
  28. T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523–533 (1985).
  29. R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977).
    [CrossRef]
  30. P. F. Bordni, M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mat. Sci. 23, 321–380 (1993).
    [CrossRef]
  31. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
    [CrossRef]

1993

1992

1991

1990

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200–6205 (1990);L. W. Xu, C. Gabrys, T. Oka, “Observation of the 2ν2(I = 2) ← overtone band of H3+,” J. Chem. Phys. 93, 6210–6215 (1990).
[CrossRef]

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
[CrossRef]

1989

1988

S. C. Hsu, R. H. Schwendeman, G. Magerl, “Infrared microwave sideband laser spectroscopy in the CO laser region,” IEEE J. Quantum Electron. 24, 2294–2301 (1988).
[CrossRef]

1987

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

R. S. Feigelson, R. K. Route, “Recent developements in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113–119 (1987).

1985

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523–533 (1985).

1984

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

1979

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

1977

D. N. Nikogosyan, “Nonlinear optics crystals (review and summary of data,” Sov. J. Quantum Electron. 7, 1–13 (1977).
[CrossRef]

1974

1973

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaS2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

1972

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Alfano, R. R.

Barnes, N. P.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Bawendi, M. G.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200–6205 (1990);L. W. Xu, C. Gabrys, T. Oka, “Observation of the 2ν2(I = 2) ← overtone band of H3+,” J. Chem. Phys. 93, 6210–6215 (1990).
[CrossRef]

Benko, Z.

Bhar, G. C.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Bordni, P. F.

P. F. Bordni, M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mat. Sci. 23, 321–380 (1993).
[CrossRef]

Borodin, N. I.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.

Boyd, G. D.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Bradley, C. C.

Broyer, M.

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523–533 (1985).

Budni, P. A.

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977).
[CrossRef]

Canarelli, P.

Carruthers, T. F.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
[CrossRef]

Catella, G.

G. Catella, Cleveland Crystal Inc., Cleveland, Ohio 44117 (personal communication, 1992).

Chicklis, E. P.

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

Chu, T.-B.

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523–533 (1985).

Chun, M. K.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
[CrossRef]

Cure, R. F.

Curl, R. F.

Das, S.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Dixon, G. J.

Duling, I. N.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
[CrossRef]

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Eckhardt, R. C.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Edgett, L. B.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson, R. K. Route, “Recent developements in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113–119 (1987).

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Fejer, M. M.

P. F. Bordni, M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mat. Sci. 23, 321–380 (1993).
[CrossRef]

Gapontev, V. P.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.

Gayen, S. K.

Gettemy, D. J.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Ghosh, D. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Goldberg, L.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
[CrossRef]

Herbst, R. L.

R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977).
[CrossRef]

Hielscher, A. H.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Hollberg, L. W.

C. E. Wieman, L. W. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991);W. Fuhrmann, W. Demtröder, “A continuously tunable GaAs diode laser with an external resonator,” Appl. Phys. B 49, 29–32 (1989).
[CrossRef]

Hsu, S. C.

S. C. Hsu, R. H. Schwendeman, G. Magerl, “Infrared microwave sideband laser spectroscopy in the CO laser region,” IEEE J. Quantum Electron. 24, 2294–2301 (1988).
[CrossRef]

Hulet, R. G.

Kasper, H. M.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Kikunaga, Y.

K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.

Kildal, H.

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaS2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Knights, M. G.

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

Kourogi, M.

K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.

Kozlovsky, W. J.

Magerl, G.

S. C. Hsu, R. H. Schwendeman, G. Magerl, “Infrared microwave sideband laser spectroscopy in the CO laser region,” IEEE J. Quantum Electron. 24, 2294–2301 (1988).
[CrossRef]

Marquardt, C. L.

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

McFee, J. H.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Metcalf, H. J.

Mikkelsen, J. C.

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaS2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Miller, C. E.

Mollenauer, L. F.

L. F. Mollenauer, “Color center lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 225–277.

Mooradian, A.

A. Mooradian, MIT and Micracor, Acton, Mass. 01720 (personal communication, 1993).

Nakagawa, K.

K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.

Nikogosyan, D. N.

D. N. Nikogosyan, “Nonlinear optics crystals (review and summary of data,” Sov. J. Quantum Electron. 7, 1–13 (1977).
[CrossRef]

Ohrimtchyuk, A. G.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.

Ohutsu, M.

K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.

Oka, T.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200–6205 (1990);L. W. Xu, C. Gabrys, T. Oka, “Observation of the 2ν2(I = 2) ← overtone band of H3+,” J. Chem. Phys. 93, 6210–6215 (1990).
[CrossRef]

Petricevic, V.

Pine, A. S.

Pollak, T. M.

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

Rehfuss, B. D.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200–6205 (1990);L. W. Xu, C. Gabrys, T. Oka, “Observation of the 2ν2(I = 2) ← overtone band of H3+,” J. Chem. Phys. 93, 6210–6215 (1990).
[CrossRef]

Risk, W. P.

Route, R. K.

R. S. Feigelson, R. K. Route, “Recent developements in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113–119 (1987).

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Sakurai, T.

Samanta, L. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Schepler, K. L.

Schunemann, P. G.

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

Schwendeman, R. H.

S. C. Hsu, R. H. Schwendeman, G. Magerl, “Infrared microwave sideband laser spectroscopy in the CO laser region,” IEEE J. Quantum Electron. 24, 2294–2301 (1988).
[CrossRef]

Shang, S. Q.

Shestakov, A. V.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.

Shin, C. H.

K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.

Simon, U.

Storz, F. G.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Sugiyama, K.

Tanner, C. E.

Tittel, F. K.

Wieman, C. E.

Yoda, J.

Zhitnyuk, V. A.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.

Ziegler, B. C.

Annu. Rev. Mat. Sci.

P. F. Bordni, M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mat. Sci. 23, 321–380 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, “Blue light generation by nonlinear mixing of Nd: YAG and GaAlAs laser emission in a KNbO3 resonant cavity,” Appl. Phys. Lett. 56, 2071–2073 (1990).
[CrossRef]

IEEE J. Quantum Electron.

N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

S. C. Hsu, R. H. Schwendeman, G. Magerl, “Infrared microwave sideband laser spectroscopy in the CO laser region,” IEEE J. Quantum Electron. 24, 2294–2301 (1988).
[CrossRef]

J. Chem. Phys.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200–6205 (1990);L. W. Xu, C. Gabrys, T. Oka, “Observation of the 2ν2(I = 2) ← overtone band of H3+,” J. Chem. Phys. 93, 6210–6215 (1990).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. (Paris)

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523–533 (1985).

Opt. Commun.

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaS2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Opt. Eng.

R. S. Feigelson, R. K. Route, “Recent developements in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113–119 (1987).

Opt. Lett.

Rev. Sci. Instrum.

C. E. Wieman, L. W. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991);W. Fuhrmann, W. Demtröder, “A continuously tunable GaAs diode laser with an external resonator,” Appl. Phys. B 49, 29–32 (1989).
[CrossRef]

Sov. J. Quantum Electron.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

D. N. Nikogosyan, “Nonlinear optics crystals (review and summary of data,” Sov. J. Quantum Electron. 7, 1–13 (1977).
[CrossRef]

Other

G. Catella, Cleveland Crystal Inc., Cleveland, Ohio 44117 (personal communication, 1992).

L. F. Mollenauer, “Color center lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 225–277.

R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1989).
[CrossRef]

P. G. Schunemann, P. A. Budni, M. G. Knights, T. M. Pollak, E. P. Chicklis, C. L. Marquardt, “Recent advances in ZeGeP2 mid infrared optical parametric oscillators,” in Advanced Solid-State Lasers Topical Meeting (Optical Society of America, Washington, D.C., 1993), paper AMF2, p. 18.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, V. P. Gapontev, “Tunable Cr4+:YAG lasers,” in Conference on Lasers and Electro-Optics Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 592–593.

K. Nakagawa, M. Ohutsu, C. H. Shin, M. Kourogi, Y. Kikunaga, “Semiconductor lasers for highly coherent optical sweep generator,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, Tenicols '91, M. Ducloy, E. Giacobino, G. Camy, eds. (World Scientific, Singapore, 1992), pp. 353–358.

A. Mooradian, MIT and Micracor, Acton, Mass. 01720 (personal communication, 1993).

R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Infrared-wavelength-tuning characteristics with corresponding pump sources for (a) AgGaS2 and (b) AgGaSe2. The 90° type I phase-matching curves of AgGaS2 and AgGaSe2 are based on the refractive-index data given in Refs. 15 and 16, respectively.

Fig. 2
Fig. 2

Calculated DFG output power for an input power product PPPs of 0.25 W2 as a function of the wavelength with (a) AgGaS2 and (b, c) AgGaSe2. In all cases, crystal length = 45 mm and confocal parameter = 40 mm. The case of focused Gaussian beams is considered in the calculation. Values of 12 and 33 pm/V are used for the nonlinear coefficient d36 of AgGaS2 and AgGaSe2, respectively.10

Fig. 3
Fig. 3

Wavelength dependence of the phase-matching angle θ and effective crystal length leff for critical type I phase-matching in AgGaSe2 with a Nd:YAG laser (1.32 μm) as the fixed pump input and diode-laser input as the tunable signal (1.6–1.4 μm).

Fig. 4
Fig. 4

Wavelength dependence of the calculated IR DFG power for critical type I phase matching in AgGaSe2 with a Nd:YAG laser (1.32 μm, 500 mW) as the fixed pump and diode lasers (1.6–1.4 μm) followed by an amplifier21 (500 mW) as the tunable signal. The conditions are an input power product PPPs = 0.25 W2, a crystal length of 45 mm, optimal focusing conditions, and a nonlinear coefficient d36 of 33 pm/V.10

Tables (3)

Tables Icon

Table 1 Characteristics of Important IR Nonlinear Optical Crystals

Tables Icon

Table 2 Pump Sources in DFG Mixing with AgGaSe2a

Tables Icon

Table 3 Phase-Matchable DFG Wavelength Rangea

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P i = 4 ω i 2 k s d eff 2 l ɛ 0 π c 3 n p n s n i ( 1 + μ ) P s P p h ( μ , ξ ) .
h mm ( B ) h mm ( 0 ) / [ 1 + ( 4 B 2 / π ) h mm ( 0 ) ] ,

Metrics