Abstract

ZnS-coated Ag hollow waveguides for Er:YAG, CO, and CO2 laser light are fabricated based on a sputtering and an electroplating technique. Three types of these waveguides with a 1-mm diameter and a 1-m length are fabricated. Two of them are designed to achieve the minimum loss at the wavelengths of Er:YAG and CO laser light, and the other is for all the lasers. Straight losses of 0.4, 0.5, and 0.25 dB/m are obtained for Er:YAG, CO, and CO2 laser light, respectively. Because the waveguides are flexible and low loss, they are useful in delivery of mid-infrared lasers in industrial and medical applications.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Merberg, J. A. Harrington, “Single-crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1992).
  2. S. Wüthrich, W. Lüthy, H. P. Wever, “Optical damage thresholds at 2.94 μm in fluoride glass fibers,” Appl. Opt. 39, 5833–5837 (1992).
    [CrossRef]
  3. L. Nagli, A. Katzir, “CO2 laser power transmission and laser induced breakdown in AgClxBr1−x crystals, polycrystals, and fibers,” Appl. Phys. Lett. 61, 1624–1625 (1992).
    [CrossRef]
  4. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metal waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  5. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  6. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
    [CrossRef] [PubMed]
  7. Y. Matsuura, M. Miyagi, “Low-loss metallic hollow waveguides coated with durable and nontoxic ZnS,” Appl. Phys. Lett. 61, 1622–1623 (1992).
    [CrossRef]
  8. Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
    [CrossRef]
  9. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow wavegides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  10. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
    [CrossRef] [PubMed]

1992 (4)

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Low-loss metallic hollow waveguides coated with durable and nontoxic ZnS,” Appl. Phys. Lett. 61, 1622–1623 (1992).
[CrossRef]

S. Wüthrich, W. Lüthy, H. P. Wever, “Optical damage thresholds at 2.94 μm in fluoride glass fibers,” Appl. Opt. 39, 5833–5837 (1992).
[CrossRef]

L. Nagli, A. Katzir, “CO2 laser power transmission and laser induced breakdown in AgClxBr1−x crystals, polycrystals, and fibers,” Appl. Phys. Lett. 61, 1624–1625 (1992).
[CrossRef]

1990 (3)

1989 (1)

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metal waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Croitoru, N.

Dror, J.

Gannot, I.

Harrington, J. A.

G. Merberg, J. A. Harrington, “Single-crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1992).

Hashimoto, T.

Hongo, A.

Katzir, A.

L. Nagli, A. Katzir, “CO2 laser power transmission and laser induced breakdown in AgClxBr1−x crystals, polycrystals, and fibers,” Appl. Phys. Lett. 61, 1624–1625 (1992).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metal waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Lüthy, W.

S. Wüthrich, W. Lüthy, H. P. Wever, “Optical damage thresholds at 2.94 μm in fluoride glass fibers,” Appl. Opt. 39, 5833–5837 (1992).
[CrossRef]

Matsumoto, K.

Matsuura, Y.

Y. Matsuura, M. Miyagi, “Low-loss metallic hollow waveguides coated with durable and nontoxic ZnS,” Appl. Phys. Lett. 61, 1622–1623 (1992).
[CrossRef]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow wavegides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Merberg, G.

G. Merberg, J. A. Harrington, “Single-crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1992).

Miyagi, M.

Y. Matsuura, M. Miyagi, “Low-loss metallic hollow waveguides coated with durable and nontoxic ZnS,” Appl. Phys. Lett. 61, 1622–1623 (1992).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow wavegides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metal waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Morosawa, K.

Nagli, L.

L. Nagli, A. Katzir, “CO2 laser power transmission and laser induced breakdown in AgClxBr1−x crystals, polycrystals, and fibers,” Appl. Phys. Lett. 61, 1624–1625 (1992).
[CrossRef]

Saito, M.

Shiota, T.

Wever, H. P.

S. Wüthrich, W. Lüthy, H. P. Wever, “Optical damage thresholds at 2.94 μm in fluoride glass fibers,” Appl. Opt. 39, 5833–5837 (1992).
[CrossRef]

Wüthrich, S.

S. Wüthrich, W. Lüthy, H. P. Wever, “Optical damage thresholds at 2.94 μm in fluoride glass fibers,” Appl. Opt. 39, 5833–5837 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

L. Nagli, A. Katzir, “CO2 laser power transmission and laser induced breakdown in AgClxBr1−x crystals, polycrystals, and fibers,” Appl. Phys. Lett. 61, 1624–1625 (1992).
[CrossRef]

Y. Matsuura, M. Miyagi, “Low-loss metallic hollow waveguides coated with durable and nontoxic ZnS,” Appl. Phys. Lett. 61, 1622–1623 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metal waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Laser Technol. (1)

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Other (1)

G. Merberg, J. A. Harrington, “Single-crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Flexibility of the dielectric-coated waveguide. The bending radius is approximately 10 cm. (b) Demonstration of CO2 laser delivery. The wood plate is burned by the transmitted power of 6 W.

Fig. 2
Fig. 2

Loss spectra of the ZnS-coated Ag waveguides for an Er:YAG and a CO laser. The waveguides are excited by a Gaussian beam with a FWHM of 5°.

Fig. 3
Fig. 3

Loss spectra of the ZnS-coated Ag waveguide for a CO2 laser and the Ag hollow waveguide without a dielectric layer, which is excited by a Gaussian beam with a FWHM of 5°. The coated waveguide also shows low losses at the wavelengths of an Er:YAG and a CO laser.

Fig. 4
Fig. 4

Bending losses of the ZnS-coated and the Ge-coated Ag waveguides for CO2 laser light. The circles and the triangles are the losses for the light polarized perpendicularly and parallel to the bending plane, respectively.

Fig. 5
Fig. 5

Bending losses of the ZnS-coated Ag waveguides for an Er:YAG and a CO2 laser. The polarizations are random for the Er:YAG and circular for the CO2 laser.

Fig. 6
Fig. 6

Input–output energy characteristic of the ZnS-coated Ag waveguide for an Er:YAG laser. The pulse repetition rate is 3 pps.

Fig. 7
Fig. 7

Bending losses of the ZnS-coated Ag waveguide for a CO laser. The circles and the triangles are the same as those in Fig. 4.

Tables (1)

Tables Icon

Table 1 Transmission Characteristics of the ZnS-Coated Ag Waveguides

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = λ 2 π ( n 2 1 ) 1 / 2 tan 1 [ n ( n 2 1 ) 1 / 4 ] ,

Metrics