Abstract

Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Vaziri, C. L. Chen, “Strain sensing with etched fiber intensity sensors,” in Proceedings of the Seventh Optical Fiber Sensors, S. Rashleigh, ed. (The Institution of Radio and Electronics Engineers, Sydney, 1990), pp. 281–284.
  2. M. Vaziri, C. L. Chen, “Etched fibers as strain gauges,” IEEE J. Lightwave Technol. 10, 836–841 (1992).
    [CrossRef]
  3. D. Marcuse, “Losses and impulse response of a parabolic index fiber with random bends,” Bell Syst. Tech. J. 52, 1423–1437 (1973).
  4. N. Lagakos, J. H. Cole, J. A. Bucaro, “Microbend fiber-optic sensor,” Appl. Opt. 26, 2171–2180 (1987).
    [CrossRef] [PubMed]
  5. L. T. Wood, F. Romero-Borja, “Optical attenuation by periodic microdistortions of a sensor fiber,” Opt. Lett 10, 632–634 (1985).
    [CrossRef] [PubMed]
  6. J. N. Fields, “Attenuation of a parabolic-index fiber with periodic bends,” Appl. Phys. Lett. 36, 799–801 (1980).
    [CrossRef]
  7. M. B. J. Diemeer, E. S. Trommel, “Fiber-optic microbend sensors: sensitivity as a function of distortion wavelength,” Opt. Lett. 9, 260–262 (1984).
    [CrossRef] [PubMed]
  8. W. H. G. Horsthuis, J. H. J. Fluitman, “The development of fiber optic microbend sensors,” Sensors Actuators 3, 99–110 (1982/1983).
    [CrossRef]
  9. R. Mavaddat, “Ray analysis of microbend fiber sensors,” Sensors Actuators 6, 289–295 (1984).
    [CrossRef]
  10. J. Dally, Experimental Stress Analysis (McGraw-Hill, New York, 1978).
  11. M. Hoit, sstan (Department of Civil Engineering, University of Florida, Gainesville, Fla., 1987).
  12. ansys, Revision 4.4 (Swanson Analysis Systems, Houston, Pa., 1990).

1992 (1)

M. Vaziri, C. L. Chen, “Etched fibers as strain gauges,” IEEE J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

1987 (1)

1985 (1)

L. T. Wood, F. Romero-Borja, “Optical attenuation by periodic microdistortions of a sensor fiber,” Opt. Lett 10, 632–634 (1985).
[CrossRef] [PubMed]

1984 (2)

1980 (1)

J. N. Fields, “Attenuation of a parabolic-index fiber with periodic bends,” Appl. Phys. Lett. 36, 799–801 (1980).
[CrossRef]

1973 (1)

D. Marcuse, “Losses and impulse response of a parabolic index fiber with random bends,” Bell Syst. Tech. J. 52, 1423–1437 (1973).

Bucaro, J. A.

Chen, C. L.

M. Vaziri, C. L. Chen, “Etched fibers as strain gauges,” IEEE J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

M. Vaziri, C. L. Chen, “Strain sensing with etched fiber intensity sensors,” in Proceedings of the Seventh Optical Fiber Sensors, S. Rashleigh, ed. (The Institution of Radio and Electronics Engineers, Sydney, 1990), pp. 281–284.

Cole, J. H.

Dally, J.

J. Dally, Experimental Stress Analysis (McGraw-Hill, New York, 1978).

Diemeer, M. B. J.

Fields, J. N.

J. N. Fields, “Attenuation of a parabolic-index fiber with periodic bends,” Appl. Phys. Lett. 36, 799–801 (1980).
[CrossRef]

Fluitman, J. H. J.

W. H. G. Horsthuis, J. H. J. Fluitman, “The development of fiber optic microbend sensors,” Sensors Actuators 3, 99–110 (1982/1983).
[CrossRef]

Hoit, M.

M. Hoit, sstan (Department of Civil Engineering, University of Florida, Gainesville, Fla., 1987).

Horsthuis, W. H. G.

W. H. G. Horsthuis, J. H. J. Fluitman, “The development of fiber optic microbend sensors,” Sensors Actuators 3, 99–110 (1982/1983).
[CrossRef]

Lagakos, N.

Marcuse, D.

D. Marcuse, “Losses and impulse response of a parabolic index fiber with random bends,” Bell Syst. Tech. J. 52, 1423–1437 (1973).

Mavaddat, R.

R. Mavaddat, “Ray analysis of microbend fiber sensors,” Sensors Actuators 6, 289–295 (1984).
[CrossRef]

Romero-Borja, F.

L. T. Wood, F. Romero-Borja, “Optical attenuation by periodic microdistortions of a sensor fiber,” Opt. Lett 10, 632–634 (1985).
[CrossRef] [PubMed]

Trommel, E. S.

Vaziri, M.

M. Vaziri, C. L. Chen, “Etched fibers as strain gauges,” IEEE J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

M. Vaziri, C. L. Chen, “Strain sensing with etched fiber intensity sensors,” in Proceedings of the Seventh Optical Fiber Sensors, S. Rashleigh, ed. (The Institution of Radio and Electronics Engineers, Sydney, 1990), pp. 281–284.

Wood, L. T.

L. T. Wood, F. Romero-Borja, “Optical attenuation by periodic microdistortions of a sensor fiber,” Opt. Lett 10, 632–634 (1985).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. N. Fields, “Attenuation of a parabolic-index fiber with periodic bends,” Appl. Phys. Lett. 36, 799–801 (1980).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Losses and impulse response of a parabolic index fiber with random bends,” Bell Syst. Tech. J. 52, 1423–1437 (1973).

IEEE J. Lightwave Technol. (1)

M. Vaziri, C. L. Chen, “Etched fibers as strain gauges,” IEEE J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

Opt. Lett (1)

L. T. Wood, F. Romero-Borja, “Optical attenuation by periodic microdistortions of a sensor fiber,” Opt. Lett 10, 632–634 (1985).
[CrossRef] [PubMed]

Opt. Lett. (1)

Sensors Actuators (2)

W. H. G. Horsthuis, J. H. J. Fluitman, “The development of fiber optic microbend sensors,” Sensors Actuators 3, 99–110 (1982/1983).
[CrossRef]

R. Mavaddat, “Ray analysis of microbend fiber sensors,” Sensors Actuators 6, 289–295 (1984).
[CrossRef]

Other (4)

J. Dally, Experimental Stress Analysis (McGraw-Hill, New York, 1978).

M. Hoit, sstan (Department of Civil Engineering, University of Florida, Gainesville, Fla., 1987).

ansys, Revision 4.4 (Swanson Analysis Systems, Houston, Pa., 1990).

M. Vaziri, C. L. Chen, “Strain sensing with etched fiber intensity sensors,” in Proceedings of the Seventh Optical Fiber Sensors, S. Rashleigh, ed. (The Institution of Radio and Electronics Engineers, Sydney, 1990), pp. 281–284.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Asymmetric etched fiber without and with tension. P, input power; T, transmitted power.

Fig. 2
Fig. 2

Bending loss dependence on spatial periodicity.

Fig. 3
Fig. 3

Bending loss dependence on the number of bends and bend amplitude.

Fig. 4
Fig. 4

Ray trajectory in a straight and bent waveguide.

Fig. 5
Fig. 5

Average ray angle change versus (Λ/Λ a ).

Fig. 6
Fig. 6

Etched structure and various parameters characterizing the geometric features.

Fig. 7
Fig. 7

Induced deformation for various spatial periodicities with N = 5 and a fixed total length.

Fig. 8
Fig. 8

Asymmetric etched optical fiber.

Fig. 9
Fig. 9

Effects of strain on the power transmission.

Fig. 10
Fig. 10

Gauge factor versus spatial periodicity (Λ/Λ c ).

Fig. 11
Fig. 11

Gauge factor versus etching depth.

Fig. 12
Fig. 12

Schematic of the setup for the dynamic response measurement.

Fig. 13
Fig. 13

Dynamic responses of an etched fiber strain sensor and the displacement sensor.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Λ c = 2 π r n c o NA ,
Λ c = 2 π r n c o NA ,
GF = δ P / P δ L / L = 1 T δ L / L .
δθ a 4 π A Λ sin 2 π Λ ( x + Λ a 2 δ x ) .
δθ a 4 π A Λ sin 2 π Λ ( x + Λ a 2 ) .
Δ θ a ( x ) 4 π A Λ i = 0 m 1 ( 1 ) i sin [ 2 π Λ ( x + i Λ a 2 ) ] ,
Δ θ a 2 Λ a 0 Λ a / 2 | Δ θ a ( x ) | d x .
Δ θ a 8 A m Λ a ,
Λ m x Λ c = 4 n c l 2 π n c o 2 2 π 0 . 9 .
A N 1 A N 2 = ( N 2 N 1 ) 2 ( Λ 1 Λ 2 ) 2 ,

Metrics