Abstract

An experimental study of the retinal image quality in aged subjects after their eyes have been implanted with intraocular lenses (IOL’s) has been performed. The method is based on recording in vivo the aerial image of a point test, after a double pass through the ocular media, and subsequent computation of the eye’s modulation transfer function. The optical performance of three different types of bifocal IOL is compared with that of conventional monofocal IOL’s. The results show that eyes implanted with bifocals exhibit a mean reduction in the modulation transfer function (contrast in the retinal image) of a factor of 2, while keeping a resolution similar to that of monofocal IOL’s (which explains why visual acuities are also similar in these two cases). The mean retinal image modulation in eyes implanted with monofocal IOL’s is ~2.5 times lower than that obtained with young emmetropic subjects, but it seems to be similar to that corresponding to # of persons of the same age (~60 years) normal eyes.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), Chap. 6, p. 135.
  2. M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses,” Am. J. Ophthalmol. 96, 435–438 (1983).
    [PubMed]
  3. M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: optical analysis,” Invest. Ophthalmol. Vis. Sci. 25, 1458–1460 (1984).
    [PubMed]
  4. A. Maxwell, L. T. Nordan, eds., Multifocal Intraocular Lenses (SLACK, Inc., Thorofare, N.J., 1991).
  5. T. Olsen, L. Corydon, “Contrast sensitivity in patients with a new type of multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 42–46 (1990).
    [PubMed]
  6. T. Olsen, L. Corydon, “Contrast sensitivity as a function of focus in patients with the diffractive multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 703–706 (1990).
    [PubMed]
  7. I. Miranda, “Estudio de la visión y sus alteraciones en la pseudofaquia multifocal (815 LE),” Ph.D. dissertation (Universidad Complutense de Madrid, Madrid, 1991).
  8. G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
    [CrossRef] [PubMed]
  9. P. Ginsburg, “Clinical findings from a new contrast sensitivity test chart,” in Advances in Diagnostic Visual Optics, A. Fiorentini, D. L. Guyton, I. M. Siegal, eds. (Springer-Verlag, Berlin, 1987), pp. 132–140.
  10. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  11. J. Santamaría, P. Artal, J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef] [PubMed]
  12. P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
    [CrossRef] [PubMed]
  13. R. Navarro, P. Artal, D. R. Williams, “Optical quality of the human eye across the visual field,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 48–51.
  14. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 210–212 (1993).
    [CrossRef]
  15. V. Portney, “Zonal-progressive design: new multifocal ophthalmic lens to correct presbyopia,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 97–100.
  16. R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, New York, 1988), Chap. 5, p. 149.
  17. D. R. Williams, R. Navarro, D. Brainard, “Comparison of double-pass and interferometric estimates of the optical quality of the eye,” submitted to J. Opt. Soc. Am. A.
  18. J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflectomodulometry,” Ophthal. Physiol. Opt. 9, 53–60 (1989).
    [CrossRef]
  19. S. Sanislo, D. Wicker, D. G. Green, “Contrast sensitivity measurements with the echelon diffractive bifocal contact lens as compared to bifocal spectacles,” Contact Lens J. 18, 161–164 (1992).
  20. D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66, 492–506 (1989).
    [CrossRef] [PubMed]
  21. D. M. Silberman, “Image quality evaluation of multifocal intraocular lenses,” in Ophthalmic and Visual Optics, Vol. 2 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 122–125.
  22. C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
    [CrossRef] [PubMed]
  23. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
    [CrossRef]
  24. R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]

1993 (2)

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 210–212 (1993).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
[CrossRef]

1992 (2)

S. Sanislo, D. Wicker, D. G. Green, “Contrast sensitivity measurements with the echelon diffractive bifocal contact lens as compared to bifocal spectacles,” Contact Lens J. 18, 161–164 (1992).

P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
[CrossRef] [PubMed]

1990 (2)

T. Olsen, L. Corydon, “Contrast sensitivity in patients with a new type of multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 42–46 (1990).
[PubMed]

T. Olsen, L. Corydon, “Contrast sensitivity as a function of focus in patients with the diffractive multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 703–706 (1990).
[PubMed]

1989 (2)

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66, 492–506 (1989).
[CrossRef] [PubMed]

J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflectomodulometry,” Ophthal. Physiol. Opt. 9, 53–60 (1989).
[CrossRef]

1987 (1)

1985 (2)

G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
[CrossRef] [PubMed]

R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

1984 (1)

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: optical analysis,” Invest. Ophthalmol. Vis. Sci. 25, 1458–1460 (1984).
[PubMed]

1983 (2)

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses,” Am. J. Ophthalmol. 96, 435–438 (1983).
[PubMed]

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

1965 (1)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Artal, P.

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 210–212 (1993).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
[CrossRef]

P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
[CrossRef] [PubMed]

J. Santamaría, P. Artal, J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef] [PubMed]

R. Navarro, P. Artal, D. R. Williams, “Optical quality of the human eye across the visual field,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 48–51.

Atchison, D. A.

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66, 492–506 (1989).
[CrossRef] [PubMed]

Bescós, J.

Brainard, D.

D. R. Williams, R. Navarro, D. Brainard, “Comparison of double-pass and interferometric estimates of the optical quality of the eye,” submitted to J. Opt. Soc. Am. A.

Campbell, F. W.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Corydon, L.

T. Olsen, L. Corydon, “Contrast sensitivity in patients with a new type of multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 42–46 (1990).
[PubMed]

T. Olsen, L. Corydon, “Contrast sensitivity as a function of focus in patients with the diffractive multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 703–706 (1990).
[PubMed]

De Valois, K. K.

R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, New York, 1988), Chap. 5, p. 149.

De Valois, R. L.

R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, New York, 1988), Chap. 5, p. 149.

Ferro, M.

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
[CrossRef]

Ginsburg, P.

P. Ginsburg, “Clinical findings from a new contrast sensitivity test chart,” in Advances in Diagnostic Visual Optics, A. Fiorentini, D. L. Guyton, I. M. Siegal, eds. (Springer-Verlag, Berlin, 1987), pp. 132–140.

Gorrand, J. M.

J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflectomodulometry,” Ophthal. Physiol. Opt. 9, 53–60 (1989).
[CrossRef]

Green, D. G.

S. Sanislo, D. Wicker, D. G. Green, “Contrast sensitivity measurements with the echelon diffractive bifocal contact lens as compared to bifocal spectacles,” Contact Lens J. 18, 161–164 (1992).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Legge, G. E.

G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
[CrossRef] [PubMed]

Miranda, I.

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
[CrossRef]

I. Miranda, “Estudio de la visión y sus alteraciones en la pseudofaquia multifocal (815 LE),” Ph.D. dissertation (Universidad Complutense de Madrid, Madrid, 1991).

Nakazawa, M.

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: optical analysis,” Invest. Ophthalmol. Vis. Sci. 25, 1458–1460 (1984).
[PubMed]

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses,” Am. J. Ophthalmol. 96, 435–438 (1983).
[PubMed]

Navarro, R.

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 210–212 (1993).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
[CrossRef]

P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
[CrossRef] [PubMed]

R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

D. R. Williams, R. Navarro, D. Brainard, “Comparison of double-pass and interferometric estimates of the optical quality of the eye,” submitted to J. Opt. Soc. Am. A.

R. Navarro, P. Artal, D. R. Williams, “Optical quality of the human eye across the visual field,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 48–51.

Ohtsuki, K.

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: optical analysis,” Invest. Ophthalmol. Vis. Sci. 25, 1458–1460 (1984).
[PubMed]

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses,” Am. J. Ophthalmol. 96, 435–438 (1983).
[PubMed]

Olsen, T.

T. Olsen, L. Corydon, “Contrast sensitivity in patients with a new type of multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 42–46 (1990).
[PubMed]

T. Olsen, L. Corydon, “Contrast sensitivity as a function of focus in patients with the diffractive multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 703–706 (1990).
[PubMed]

Owsley, C.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Pelli, D. G.

G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
[CrossRef] [PubMed]

Portney, V.

V. Portney, “Zonal-progressive design: new multifocal ophthalmic lens to correct presbyopia,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 97–100.

Rubin, G. S.

G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
[CrossRef] [PubMed]

Sanislo, S.

S. Sanislo, D. Wicker, D. G. Green, “Contrast sensitivity measurements with the echelon diffractive bifocal contact lens as compared to bifocal spectacles,” Contact Lens J. 18, 161–164 (1992).

Santamaría, J.

Schleske, M. M.

G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
[CrossRef] [PubMed]

Sekuler, R.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Siemsen, D.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Silberman, D. M.

D. M. Silberman, “Image quality evaluation of multifocal intraocular lenses,” in Ophthalmic and Visual Optics, Vol. 2 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 122–125.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), Chap. 6, p. 135.

Wicker, D.

S. Sanislo, D. Wicker, D. G. Green, “Contrast sensitivity measurements with the echelon diffractive bifocal contact lens as compared to bifocal spectacles,” Contact Lens J. 18, 161–164 (1992).

Williams, D. R.

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 210–212 (1993).
[CrossRef]

R. Navarro, P. Artal, D. R. Williams, “Optical quality of the human eye across the visual field,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 48–51.

D. R. Williams, R. Navarro, D. Brainard, “Comparison of double-pass and interferometric estimates of the optical quality of the eye,” submitted to J. Opt. Soc. Am. A.

Am. J. Ophthalmol. (1)

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses,” Am. J. Ophthalmol. 96, 435–438 (1983).
[PubMed]

Appl. Opt. (1)

Contact Lens J. (1)

S. Sanislo, D. Wicker, D. G. Green, “Contrast sensitivity measurements with the echelon diffractive bifocal contact lens as compared to bifocal spectacles,” Contact Lens J. 18, 161–164 (1992).

Invest. Ophthalmol. Vis. Sci. (1)

M. Nakazawa, K. Ohtsuki, “Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: optical analysis,” Invest. Ophthalmol. Vis. Sci. 25, 1458–1460 (1984).
[PubMed]

J. Cataract Refract. Surg. (2)

T. Olsen, L. Corydon, “Contrast sensitivity in patients with a new type of multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 42–46 (1990).
[PubMed]

T. Olsen, L. Corydon, “Contrast sensitivity as a function of focus in patients with the diffractive multifocal intraocular lens,” J. Cataract Refract. Surg. 16, 703–706 (1990).
[PubMed]

J. Opt. Soc. Am. A (4)

J. Santamaría, P. Artal, J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef] [PubMed]

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 210–212 (1993).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1657–1663 (1993).
[CrossRef]

R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

J. Physiol. (London) (1)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Ophthal. Physiol. Opt. (1)

J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflectomodulometry,” Ophthal. Physiol. Opt. 9, 53–60 (1989).
[CrossRef]

Optom. Vis. Sci. (1)

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66, 492–506 (1989).
[CrossRef] [PubMed]

Vision Res. (2)

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

G. E. Legge, D. G. Pelli, G. S. Rubin, M. M. Schleske, “Psychophysics of reading I. Normal vision,” Vision Res. 25, 239–252 (1985).
[CrossRef] [PubMed]

Other (9)

P. Ginsburg, “Clinical findings from a new contrast sensitivity test chart,” in Advances in Diagnostic Visual Optics, A. Fiorentini, D. L. Guyton, I. M. Siegal, eds. (Springer-Verlag, Berlin, 1987), pp. 132–140.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), Chap. 6, p. 135.

I. Miranda, “Estudio de la visión y sus alteraciones en la pseudofaquia multifocal (815 LE),” Ph.D. dissertation (Universidad Complutense de Madrid, Madrid, 1991).

A. Maxwell, L. T. Nordan, eds., Multifocal Intraocular Lenses (SLACK, Inc., Thorofare, N.J., 1991).

R. Navarro, P. Artal, D. R. Williams, “Optical quality of the human eye across the visual field,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 48–51.

V. Portney, “Zonal-progressive design: new multifocal ophthalmic lens to correct presbyopia,” in Ophthalmic and Visual Optics, Vol. 3 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 97–100.

R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, New York, 1988), Chap. 5, p. 149.

D. R. Williams, R. Navarro, D. Brainard, “Comparison of double-pass and interferometric estimates of the optical quality of the eye,” submitted to J. Opt. Soc. Am. A.

D. M. Silberman, “Image quality evaluation of multifocal intraocular lenses,” in Ophthalmic and Visual Optics, Vol. 2 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 122–125.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for recording and processing the double-pass aerial image of a point test. The He–Ne laser is the light source; LND is a neutral density filter; ND is the neutral high-density filter mounted on a rotary solenoid, RS; MO is the 20× microscope objective; O is a 10-μm pinhole, which acts as our point object; C is the collimator; PBS is the pellicle beam splitter; BD is the black diffuser; L1 and L2 are two equal lenses; FB is the focusing block; O′ is the retinal image of the point O; Z is the zoom lens (fz′ = 60–300 mm); O″ is the double-pass aerial image of O; CCD is the videocamera; M is the mouse; AP is the artificial pupil (not used in this experiment); f′ is the focal length.

Fig. 2
Fig. 2

Perspective three-dimensional plots of the intensity distribution of aerial point-spread functions. Five examples are included illustrating the cases of a normal emmetropic young eye (top) and eyes with implanted IOL’s: MO (middle left) and DI (middle right). The lower plots correspond to a refractive multifocal with seven zones (left) and two zones (right).

Fig. 3
Fig. 3

Complete set of experimental data representing radial profiles of the two-dimensional MTF’s on a logarithmic scale for four types of IOL: (a) MO, (b) DI, (c), (d) multifocal refractives, with seven (R7) and two (R2) zones. In the case of multifocal lenses, two MTF’s, corresponding to near (solid circles) and far (open squares), are represented. The dashed curve shows a reference representing a mean young emmetropic eye.

Fig. 4
Fig. 4

Mean values computed from the data of Fig. 3 for near (solid circles) and far (open squares) foci. In the case of MO the in-focus mean MTF is compared with those obtained with +0.75 D (solid circles) and −0.75 D (open squares) of defocusing. These defocused MTF’s of the MO IOL’s are comparable with the in-focus MTF’s of multifocals. The near and far MTF’s of multifocals show different behaviors. There is no difference for the diffractive, while for the refractive IOL’s the better MTF corresponds to the central more paraxial zone.

Fig. 5
Fig. 5

Global averages when we compare MO (solid circles) and multifocal (open squares) MTF’s. The dashed curve is a reference representing the MTF of an emmetropic young eye.

Fig. 6
Fig. 6

MTF ratios computed from the mean data of Fig. 5. The solid curve (with solid circles) represents the ratio of MO versus multifocal MTF’s as a function of spatial frequency. The greatest difference occurs at 5 cycles/deg, and then the ratio decreases monotonically with a mean value of ~2. The dashed curve (squares) shows the ratio between MO MTF’s and the reference young emmetropic eye, which increases with spatial frequency.

Fig. 7
Fig. 7

Average results of a clinical evaluation of the CSF with a Vectorvision CSV-1000 chart. Open symbols correspond to normal subjects: We called those between 20 and 30 years of age (squares) young and those of the same mean age (60) as the implanted group (circles) aged. Solid symbols correspond to subjects with implanted IOL’s: MO’s (squares) and multifocals (circles).

Fig. 8
Fig. 8

Example comparing the MTF’s corresponding to both eyes of a 62-year-old subject (EA). A MO IOL was implanted in his right eye (solid circles), while the left eye is normal (open squares). They are very similar; the MTF of the MO IOL is slightly below that of the normal eye.

Fig. 9
Fig. 9

Pseudoaccommodation plots of MO and multifocal IOL’s. The data correspond to the mode value, from a population of 100 MO and 100 bifocal pseudophakic eyes, of the visual acuity obtained with Jaegger optotypes as a function of stimulus vergence in diopters. (The data were converted from the Jaegger scale to the more common decimal acuity scale.)

Metrics