Abstract

Application of the two-dimensional laser Rayleigh technique to the investigation of a large-scale industrial combustor is reported for the first time to our knowledge. Two-dimensional laser Rayleigh scattering was used to perform quantitative measurements of the temperature fields in different downstream positions of a 150-kW industrial, premixed, turbulent low-emission swirl combustor. Because of the possible interferences of the Rayleigh signal with Mie scattering and laser reflections of the burner components, some minor modifications of the design of the combustor and its gas supply were necessary. This was done without changing the basic characteristics of the burner. The quantitative and instantaneous character of the collected data allows calculation of ensemble-averaged temperature distributions and analysis of the flame structure in the turbulent combustion field. The measured temperature distribution confirms that the flame is stabilized by a central recirculation zone.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).
  2. R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Proceedings of the Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1489–1498.
    [CrossRef]
  3. I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–10 (1985).
    [CrossRef]
  4. J. Haumann, A. Leipertz, “Flame-temperature measurements using the Rayleigh scattering photon-correlation technique,” Opt. Lett. 9, 487–489 (1984).
    [CrossRef] [PubMed]
  5. M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping species concentration and temperature in turbulent flame,” Opt. Lett. 10, 267–269 (1985).
    [CrossRef] [PubMed]
  6. D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
    [CrossRef]
  7. A. Leipertz, G. Kowalewski, “Flow structure analysis by two-dimensional laser Rayleigh techniques,” in Editions de l’ Association Entropie, (Special Issue on Eurotherm Seminar 9, 1989), P. Andre, R. Creff, eds. (Entropie, Creteil, France, 1991), pp. 69–71.
  8. R. B. Barat, J. P. Longwell, A. F. Sarofim, S. P. Smith, E. Bar-Ziv, “Laser Rayleigh scattering for flame thermometry in a toroidal jet stirred combustor,” Appl. Opt. 30, 3003–3011 (1991).
    [CrossRef] [PubMed]
  9. A. Leipertz, G. Kowalewski, S. Kampmann, “Measurements of gas temperature and temperature structures in premixed flames by using laser Rayleigh techniques,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 685–690.

1991 (1)

1986 (1)

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

1985 (2)

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–10 (1985).
[CrossRef]

M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping species concentration and temperature in turbulent flame,” Opt. Lett. 10, 267–269 (1985).
[CrossRef] [PubMed]

1984 (1)

Barat, R. B.

Bar-Ziv, E.

Dibble, R. W.

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Proceedings of the Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1489–1498.
[CrossRef]

Felchlin, M. P.

Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).

Fourguette, D. C.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping species concentration and temperature in turbulent flame,” Opt. Lett. 10, 267–269 (1985).
[CrossRef] [PubMed]

Haumann, J.

J. Haumann, A. Leipertz, “Flame-temperature measurements using the Rayleigh scattering photon-correlation technique,” Opt. Lett. 9, 487–489 (1984).
[CrossRef] [PubMed]

Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).

Hellat, J.

Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).

Hollenbach, R. E.

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Proceedings of the Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1489–1498.
[CrossRef]

Kampmann, S.

A. Leipertz, G. Kowalewski, S. Kampmann, “Measurements of gas temperature and temperature structures in premixed flames by using laser Rayleigh techniques,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 685–690.

Kowalewski, G.

A. Leipertz, G. Kowalewski, S. Kampmann, “Measurements of gas temperature and temperature structures in premixed flames by using laser Rayleigh techniques,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 685–690.

A. Leipertz, G. Kowalewski, “Flow structure analysis by two-dimensional laser Rayleigh techniques,” in Editions de l’ Association Entropie, (Special Issue on Eurotherm Seminar 9, 1989), P. Andre, R. Creff, eds. (Entropie, Creteil, France, 1991), pp. 69–71.

Leipertz, A.

J. Haumann, A. Leipertz, “Flame-temperature measurements using the Rayleigh scattering photon-correlation technique,” Opt. Lett. 9, 487–489 (1984).
[CrossRef] [PubMed]

A. Leipertz, G. Kowalewski, S. Kampmann, “Measurements of gas temperature and temperature structures in premixed flames by using laser Rayleigh techniques,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 685–690.

A. Leipertz, G. Kowalewski, “Flow structure analysis by two-dimensional laser Rayleigh techniques,” in Editions de l’ Association Entropie, (Special Issue on Eurotherm Seminar 9, 1989), P. Andre, R. Creff, eds. (Entropie, Creteil, France, 1991), pp. 69–71.

Levin, P. S.

Long, M. B.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping species concentration and temperature in turbulent flame,” Opt. Lett. 10, 267–269 (1985).
[CrossRef] [PubMed]

Longwell, J. P.

Namer, I.

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–10 (1985).
[CrossRef]

Sarofim, A. F.

Sattelmayer, Th.

Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).

Schefer, R. W.

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–10 (1985).
[CrossRef]

Smith, S. P.

Styner, D.

Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).

Zurn, R. M.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

Appl. Opt. (1)

Combust. Sci. Technol. (1)

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

Exp. Fluids (1)

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–10 (1985).
[CrossRef]

Opt. Lett. (2)

Other (4)

A. Leipertz, G. Kowalewski, “Flow structure analysis by two-dimensional laser Rayleigh techniques,” in Editions de l’ Association Entropie, (Special Issue on Eurotherm Seminar 9, 1989), P. Andre, R. Creff, eds. (Entropie, Creteil, France, 1991), pp. 69–71.

A. Leipertz, G. Kowalewski, S. Kampmann, “Measurements of gas temperature and temperature structures in premixed flames by using laser Rayleigh techniques,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 685–690.

Th. Sattelmayer, M. P. Felchlin, J. Haumann, J. Hellat, D. Styner, “Second generation low-emission combustors for ABB gas turbines,” ASME Paper 90-GT-162 (American Society of Mechanical Engineers, New York, 1990).

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Proceedings of the Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1489–1498.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the combustor arrangement.

Fig. 2
Fig. 2

Details of optical channel and burner position.

Fig. 3
Fig. 3

Schematic of the experimental setup of the 2D Rayleigh probe.

Fig. 4
Fig. 4

Position of the detection area relative to the burner and the combustion field.

Fig. 5
Fig. 5

Instantaneous temperature distributions at selected downstream positions.

Fig. 6
Fig. 6

Distributions of the mean temperatures at the same positions in the combustion field as in Fig. 5.

Fig. 7
Fig. 7

Distributions of the RMS temperatures at the same positions in the combustion field as in Fig. 5.

Fig. 8
Fig. 8

Typical flame structures detected in different downstream positions by indicating the regions of the unburnt gas mixture.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T ( t ) = I R coldfl I R flame ( t ) 300 K .
I F ( x , y ) = I R ( x , y ) + I B ( x , y ) + I N ( x , y ) ,
= I R ( x , y ) + I B N ( x , y ) .
I He ( x , y ) = I R He ( x , y ) + I B ( x , y ) + I N ( x , y ) ,
I Air ( x , y ) = I R Air ( x , y ) + I B ( x , y ) + I N ( x , y ) ,
I B N ( x , y ) = I He ( x , y ) - ( σ He σ Air - σ He ) [ I Air ( x , y ) - I He ( x , y ) ] .
I Air , 300 ( x , y ) = I R Air , 300 ( x , y ) + I B N ( x , y ) .
I F , T ( x , y ) = I R F , T ( x , y ) + I B N ( x , y ) .
T ( x , y ) = 300 K I Air , 300 ( x , y ) - I B N ( x , y ) I F , T ( x , y ) - I B N ( x , y ) σ F ( x , y ) σ Air ( x , y ) .

Metrics