Abstract

Wavelength modulation at 10 MHz of an AlGaAs laser diode, superposed on repetitive linear scans of wavelength, is applied to measure second-harmonic absorption line shapes of oxygen in the A band. Theoretical expressions of the harmonic line shapes, including the effect of laser amplitude modulation and varying modulation depth, are presented. A least-squares fit of the experimental line shapes to theoretical second-harmonic line shapes permits simultaneous determination of the temperature and the pressure. The use of high-repetition-rate (10-kHz) linear scans of the studied wavelength region permits application of the technique to high-speed unidimensional transient flows generated in a shock tube; velocity is derived from the Doppler shift of the absorption profiles.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
    [CrossRef] [PubMed]
  2. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
    [CrossRef] [PubMed]
  3. M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-fluorescence imaging of O2 in combustion flows using an ArF laser,” Opt. Lett. 11, 7–9 (1986).
    [CrossRef] [PubMed]
  4. R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
    [CrossRef]
  5. M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.
  6. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]
  7. H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990).
    [CrossRef]
  8. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1322 (1990).
    [CrossRef] [PubMed]
  9. C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983).
    [CrossRef] [PubMed]
  10. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  11. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Picket, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  12. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  13. L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988).
    [CrossRef] [PubMed]
  14. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  15. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  16. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
    [CrossRef] [PubMed]
  17. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  18. D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
    [CrossRef]
  19. L. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
    [CrossRef]
  20. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of lineshapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
    [CrossRef]
  21. J. M. Osterwalder, B. J. Rickett, “Frequency modulation of GaAlAs injection lasers at microwave frequency rates,” IEEE J. Quantum Electron. QE-16, 250–252 (1980).
    [CrossRef]
  22. D. T. Cassidy, J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
    [CrossRef] [PubMed]
  23. J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
    [CrossRef]
  24. J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987).
    [CrossRef] [PubMed]
  25. W. Lenth, M. Gehtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
    [CrossRef]
  26. G. Cazzoli, L. Dore, “Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection,” J. Mol. Spectrosc. 141, 49–58 (1990).
    [CrossRef]
  27. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
    [CrossRef]
  28. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
    [CrossRef]
  29. A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York, 1963).
  30. K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Maryland, 1986).
  31. L. C. Philippe, R. K. Hanson, “Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.
  32. L. C. Philippe, R. K. Hanson, “Laser absorption mass flux sensor for high speed air flows,” Opt. Lett. 16, 2002–2004 (1991).
    [CrossRef] [PubMed]

1992 (2)

1991 (2)

1990 (4)

G. Cazzoli, L. Dore, “Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection,” J. Mol. Spectrosc. 141, 49–58 (1990).
[CrossRef]

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990).
[CrossRef]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1322 (1990).
[CrossRef] [PubMed]

1989 (2)

J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

L. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

1988 (2)

1987 (5)

1986 (1)

1985 (1)

W. Lenth, M. Gehtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

1983 (4)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
[CrossRef] [PubMed]

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983).
[CrossRef] [PubMed]

1982 (3)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

D. T. Cassidy, J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980 (1)

J. M. Osterwalder, B. J. Rickett, “Frequency modulation of GaAlAs injection lasers at microwave frequency rates,” IEEE J. Quantum Electron. QE-16, 250–252 (1980).
[CrossRef]

Barbe, A.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Bomse, D. S.

Brown, L. R.

Bruce, D. M.

Camy-Peyret, C.

Carlisle, C. B.

Cassidy, D. T.

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1322 (1990).
[CrossRef] [PubMed]

J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

D. T. Cassidy, J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

Cazzoli, G.

G. Cazzoli, L. Dore, “Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection,” J. Mol. Spectrosc. 141, 49–58 (1990).
[CrossRef]

Chang, A. Y.

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Cooper, D. E.

Davidson, D. F.

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

DiRosa, M. D.

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Dore, L.

G. Cazzoli, L. Dore, “Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection,” J. Mol. Spectrosc. 141, 49–58 (1990).
[CrossRef]

Flaud, J. M.

Gallagher, T. F.

Gamache, R. R.

Gaydon, A. G.

A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York, 1963).

Gehtz, M.

W. Lenth, M. Gehtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Goldman, A.

Hanson, R. K.

L. C. Philippe, R. K. Hanson, “Laser absorption mass flux sensor for high speed air flows,” Opt. Lett. 16, 2002–2004 (1991).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
[CrossRef] [PubMed]

M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-fluorescence imaging of O2 in combustion flows using an ArF laser,” Opt. Lett. 11, 7–9 (1986).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Hayward, J. E.

J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

Hurle, I. R.

A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York, 1963).

Husson, N.

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Kanamori, H.

H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Korb, C. L.

Kroll, M.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lee, M. P.

Lempert, W.

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Lenth, W.

W. Lenth, M. Gehtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
[CrossRef] [PubMed]

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Miles, R.

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Momona, M.

H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990).
[CrossRef]

Ollinger, O.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Osterwalder, J. M.

J. M. Osterwalder, B. J. Rickett, “Frequency modulation of GaAlAs injection lasers at microwave frequency rates,” IEEE J. Quantum Electron. QE-16, 250–252 (1980).
[CrossRef]

Paul, P. H.

Philippe, L. C.

L. C. Philippe, R. K. Hanson, “Laser absorption mass flux sensor for high speed air flows,” Opt. Lett. 16, 2002–2004 (1991).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Picket, H. M.

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Poynter, R. L.

Rea, E. C.

Reid, J.

J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

D. T. Cassidy, J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rickett, B. J.

J. M. Osterwalder, B. J. Rickett, “Frequency modulation of GaAlAs injection lasers at microwave frequency rates,” IEEE J. Quantum Electron. QE-16, 250–252 (1980).
[CrossRef]

Rinsland, C. P.

Riris, H.

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Maryland, 1986).

Rothman, L. S.

Sakurai, K.

H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990).
[CrossRef]

Silver, J. A.

Smith, M. A. H.

Stanton, A. C.

Tate, D. A.

Toth, R. A.

Wang, L.

Warren, R. E.

Weng, C. Y.

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Appl. Opt. (10)

E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1322 (1990).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983).
[CrossRef] [PubMed]

L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Picket, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

D. T. Cassidy, J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987).
[CrossRef] [PubMed]

Appl. Phys. B (5)

J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

W. Lenth, M. Gehtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Can. J. Phys. (1)

H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

J. M. Osterwalder, B. J. Rickett, “Frequency modulation of GaAlAs injection lasers at microwave frequency rates,” IEEE J. Quantum Electron. QE-16, 250–252 (1980).
[CrossRef]

J. Mol. Spectrosc. (2)

G. Cazzoli, L. Dore, “Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection,” J. Mol. Spectrosc. 141, 49–58 (1990).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Opt. Lett. (3)

Other (4)

M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York, 1963).

K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Maryland, 1986).

L. C. Philippe, R. K. Hanson, “Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Transmission function τ( v ¯ ) of an absorption line with an equal Doppler and Lorentz HWHM (γ D = γ L = 1 GHz) and the corresponding coefficients H k (k = 0, 1, 2, 3) in the development of τ(v + Δv cos ω m t) in Fourier cosine series; Δv = 3.5 GHz.

Fig. 2
Fig. 2

First-harmonic signal of absorption by the RQ(15, 16) − RR(17, 17) line pair of O2, for a modulation depth of 2 GHz, a 10-MHz modulation frequency, and three values of the detection phase φ.

Fig. 3
Fig. 3

Experimental apparatus: LD, laser diode; PD’s, photodiodes.

Fig. 4
Fig. 4

a, Experimental second-harmonic signal of absorption by a low-finesse étalon (top trace); the fringe spacing is used for calibration of the relative laser frequency during the laser frequency span produced by a 10-kHz current ramp, and the envelope of the signal provides a measurement of the modulation depth. The bottom trace represents the low-frequency variation of the laser emission power; the modulation frequency is 10 MHz. b, Same trace after conversion of the time scale into a linear frequency scale by using the étalon fringe spacing; the experimental trace is compared with the result of a calculation of the 2f signal that accounts for the variation of the modulation depth during the scan; the laser frequency decreases with time.

Fig. 5
Fig. 5

Second-harmonic signals of absorption by the RQ(13, 14) line of O2 (top trace) in room air, and by the étalon (middle trace); the bottom trace represents the low-frequency variation of the laser emission power during the scan, and the bar size represents the amount of amplitude modulation induced by the 10-MHz modulation; the modulation depth is 2.1 GHz.

Fig. 6
Fig. 6

Comparison between experimental and calculated signals after calibration of the experiment for the experimental traces of Fig. 5 (Figs. 5 and 6 appear inverted because the laser frequency decreases with time).

Fig. 7
Fig. 7

Optical arrangement for the velocity measurements in the shock tube.

Fig. 8
Fig. 8

Experimental 2f absorption traces in the oxygen flow generated behind the incident shock in the shock tube; note on the top trace the difference of the line-center positions for the two probe directions making an angle θ with the flow direction.

Fig. 9
Fig. 9

Variation of the oxygen velocity and of the Doppler shift of the 2f signals as a function of time at our measurement location, 45 cm from the end wall of the shock tube; the incident shock passes in front of the test section at t = 1 ms; the initial pressure of O2 is 0.131 atm.

Fig. 10
Fig. 10

Evolution of the relative line-center positions for the two 2f signals measured along the two probe directions of the oxygen flow. Evidence of a collision-induced frequency shift is given by the discontinuity of the curve corresponding to θ = 90° occurring at t = 1 ms; the 2f signal obtained at 60° experiences a collision-induced shift and a Doppler shift in opposite directions.

Fig. 11
Fig. 11

Comparison of the single-line velocity measurements using the RQ(13, 14) line with the predictions of the shock wave theory.

Fig. 12
Fig. 12

Comparison of experiment and calculation for 2f signals of absorption in two oxygen flows generated behind shock waves; improvement of the signal-to-noise ratio can be noted on the averaged (a.v.) traces compared with the single-sweep (s.s.) traces: a, T2 = 573 K, P2 = 1 atm (initial oxygen pressure is P1 = 0.158 atm); b, T2 = 1026 K, P2 = 0.39 atm (P1 = 0.022 atm).

Fig. 13
Fig. 13

Least-squares fit of the averaged 2f signal of absorption by five oxygen lines at 759.7 nm by using the hitran database line positions and by using modified positions for the RQ(21, 22) − RR(25, 25) line pair. Result of the fit is T2 = 825 K, P2 = 0.675 atm; prediction by the theory is T2 = 814 K, P2 = 0.62 atm; peak absorption is 0.71%; initial oxygen pressure is P1 = 0.053 atm; and measurement time is 0.5 ms.

Fig. 14
Fig. 14

Least-squares fit of the averaged 2f signal of absorption by five oxygen lines at 759.7 nm; improvement of the fit (frame) is noted with modified positions for the RR(27, 27) − RR(29, 29) line pair. Result of the fit is T2 = 875 K, P2 = 0.5 atm; prediction by the theory is T2 = 940 K, P2 = 0.5 atm; peak absorption is 0.53%; initial oxygen pressure is P1 = 0.034 atm; and measurement time is 0.5 ms.

Fig. 15
Fig. 15

Summary of the simultaneous measurement of temperature, pressure (top graphs), and velocity (bottom graph) in the shock tube; each value of the initial pressure of O2 gives a measurement of T, P, V; the symbols are experimental data points; the curves are predictions by the theory.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

v ( t ) = v ¯ + Δ v cos ω m t ,
I 0 ( t ) = I ¯ 0 + i 0 cos ( ω m t + ψ ) ,
I ( t ) = I 0 ( t ) τ [ v ( t ) ] = I 0 ( t ) exp { - α [ v ( t ) ] l } ,
τ [ v ( t ) ] = k = 0 k = + H k ( v ¯ , Δ v ) cos ( k ω m t ) .
H 0 ( v ¯ , Δ v ) = 1 2 π - π + π τ ( v ¯ + Δ v cos u ) d u ,
H k ( v ¯ , Δ v ) = 1 π - π + π τ ( v ¯ + Δ v cos u ) cos k u d u ,             k > 0.
S 1 ( v ¯ ) = i 0 2 H 2 ( v ¯ , Δ v ) cos ( 2 ψ + φ ) + I ¯ 0 H 1 ( v ¯ , Δ v ) cos ( ψ + φ ) + i 0 H 0 ( v ¯ , Δ v ) cos φ ,
S 2 ( v ¯ ) = i 0 2 H 3 ( v ¯ , Δ v ) cos ( 2 ψ + φ ) + I ¯ 0 H 2 ( v ¯ , Δ v ) cos ( ψ + φ ) + i 0 2 H 1 ( v ¯ , Δ v ) cos φ ,
S 2 ( v ¯ ) = - i 0 2 H 3 ( v ¯ , Δ v ) + I ¯ 0 H 2 ( v ¯ , Δ v ) - i 0 2 H 1 ( v ¯ , Δ v ) ,
τ ( v ) = 1 1 + [ ( 2 F * / π ) sin ( π v / δ v ) ] 2 .
H 2 ( v ¯ , Δ v ) = ( 2 F * / π ) 2 cos ( 2 π v ¯ δ v ) J 2 ( 2 π Δ / δ v ) .
Δ v D v 0 = V c cos θ ,
Δ v c = - 0.159 [ P 2 ( 294 / T 2 ) 0.93 - P 1 ] GHz .
α ( v , P , T ) = line i P S i ( T ) Φ i P T ( v - v 0 i ) ,

Metrics