Abstract

The application of tunable diode lasers for in situ diagnostics in laminar hydrocarbon diffusion flames is demonstrated. By the use of both direct-absorption and wavelength-modulation (second-derivative) techniques, carbon monoxide concentrations and the local flame temperature are determined for a laminar methane–air diffusion flame supported on a Wolfhard–Parker slot burner. In both cases the results are found to be in excellent agreement with prior measurements of these quantities using both probe and optical techniques.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Yetter, F. L. Dryer, H. Rabtiz, “Complications of one-step kinetics for moist CO oxidation,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 749–760.
  2. R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980).
    [CrossRef]
  3. W. M. Pitts, “A long range plan for a research project on carbon monoxide production and prediction,” Natl. Inst. Stand. Technol. Int. Rep. 89-4185 (1989).
  4. K. Brezinsky, “High temperature oxidation of aromatic hydrocarbons,” Prog. Energy Combust. Sci. 12, 1–24 (1986).
    [CrossRef]
  5. P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1∑+ and C 1∑+ Rydberg States of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
    [CrossRef]
  6. A. Hamins, J. H. Miller, George Washington University, Washington, D.C. 20052 (personal communication, 1989).
  7. K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
    [CrossRef]
  8. R. J. Santoro, Pennsylvania State University, University Park, Pa. 16801 (personal communication, 1989).
  9. K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
    [CrossRef]
  10. G. Guelachvili, K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).
  11. S. M. Schoenung, R. K. Hanson, “Laser absorption sampling probes for temporally and spatially resolved combustion measurements,” Appl. Optics 21, 1767–1771 (1981).
    [CrossRef]
  12. R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426.
    [CrossRef]
  13. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).
  14. P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
    [CrossRef]
  15. J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  16. J. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  17. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  18. J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser measurements of trace concentrations of ammonia in an entrained flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
    [CrossRef] [PubMed]
  19. G. T. T. Tejwani, P. Varanasi, “Calculation of collisionally broadened linewidths in the infrared bands of methane,” J. Chem. Phys. 55, 1075–1083 (1971).
    [CrossRef]
  20. K. C. Smyth, National Institute of Standards and Technology, Gaithersburg, Md. 20838 (personal communication, 1990).
  21. R. K. Hanson, P. K. Falcone, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477–2480 (1978).
    [CrossRef] [PubMed]
  22. X. Ouyang, P. L. Varghese, “Selection of spectral lines for combustion diagnostics,” Appl. Opt. 29, 4884–4890 (1990).
    [CrossRef] [PubMed]
  23. R. W. Bilger, “Reaction rates in diffusion flames,” Combust. Flame 30, 277–284 (1977).
    [CrossRef]
  24. R. W. Bilger, “Turbulent diffusion flames,” Annu. Rev. Fluid Mech. 21, 101–135 (1989).
    [CrossRef]

1992 (1)

1991 (1)

1990 (2)

X. Ouyang, P. L. Varghese, “Selection of spectral lines for combustion diagnostics,” Appl. Opt. 29, 4884–4890 (1990).
[CrossRef] [PubMed]

K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
[CrossRef]

1989 (2)

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1∑+ and C 1∑+ Rydberg States of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

R. W. Bilger, “Turbulent diffusion flames,” Annu. Rev. Fluid Mech. 21, 101–135 (1989).
[CrossRef]

1986 (1)

K. Brezinsky, “High temperature oxidation of aromatic hydrocarbons,” Prog. Energy Combust. Sci. 12, 1–24 (1986).
[CrossRef]

1985 (1)

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

1981 (3)

S. M. Schoenung, R. K. Hanson, “Laser absorption sampling probes for temporally and spatially resolved combustion measurements,” Appl. Optics 21, 1767–1771 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980 (1)

R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980).
[CrossRef]

1978 (1)

1977 (1)

R. W. Bilger, “Reaction rates in diffusion flames,” Combust. Flame 30, 277–284 (1977).
[CrossRef]

1971 (1)

G. T. T. Tejwani, P. Varanasi, “Calculation of collisionally broadened linewidths in the infrared bands of methane,” J. Chem. Phys. 55, 1075–1083 (1971).
[CrossRef]

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Bilger, R. W.

R. W. Bilger, “Turbulent diffusion flames,” Annu. Rev. Fluid Mech. 21, 101–135 (1989).
[CrossRef]

R. W. Bilger, “Reaction rates in diffusion flames,” Combust. Flame 30, 277–284 (1977).
[CrossRef]

Bomse, D. S.

Brezinsky, K.

K. Brezinsky, “High temperature oxidation of aromatic hydrocarbons,” Prog. Energy Combust. Sci. 12, 1–24 (1986).
[CrossRef]

Clomburg, L. A.

R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980).
[CrossRef]

Dorfman, R. C.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Dryer, F. L.

R. A. Yetter, F. L. Dryer, H. Rabtiz, “Complications of one-step kinetics for moist CO oxidation,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 749–760.

Falcone, P. K.

R. K. Hanson, P. K. Falcone, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426.
[CrossRef]

Guelachvili, G.

G. Guelachvili, K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Hamins, A.

K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
[CrossRef]

A. Hamins, J. H. Miller, George Washington University, Washington, D.C. 20052 (personal communication, 1989).

Hanson, R. K.

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “Laser absorption sampling probes for temporally and spatially resolved combustion measurements,” Appl. Optics 21, 1767–1771 (1981).
[CrossRef]

R. K. Hanson, P. K. Falcone, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426.
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Mallard, W. G.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Miller, J. H.

K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
[CrossRef]

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

A. Hamins, J. H. Miller, George Washington University, Washington, D.C. 20052 (personal communication, 1989).

Mitchell, R. E.

R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980).
[CrossRef]

Ouyang, X.

Pitts, W. M.

W. M. Pitts, “A long range plan for a research project on carbon monoxide production and prediction,” Natl. Inst. Stand. Technol. Int. Rep. 89-4185 (1989).

Rabtiz, H.

R. A. Yetter, F. L. Dryer, H. Rabtiz, “Complications of one-step kinetics for moist CO oxidation,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 749–760.

Rao, K.

G. Guelachvili, K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Reid, J.

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Santoro, R. J.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

R. J. Santoro, Pennsylvania State University, University Park, Pa. 16801 (personal communication, 1989).

Sarofim, A. F.

R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980).
[CrossRef]

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “Laser absorption sampling probes for temporally and spatially resolved combustion measurements,” Appl. Optics 21, 1767–1771 (1981).
[CrossRef]

R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426.
[CrossRef]

Silver, J.

Silver, J. A.

Smyth, K. C.

K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
[CrossRef]

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1∑+ and C 1∑+ Rydberg States of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

K. C. Smyth, National Institute of Standards and Technology, Gaithersburg, Md. 20838 (personal communication, 1990).

Stanton, A. C.

Tejwani, G. T. T.

G. T. T. Tejwani, P. Varanasi, “Calculation of collisionally broadened linewidths in the infrared bands of methane,” J. Chem. Phys. 55, 1075–1083 (1971).
[CrossRef]

Tjossem, P. J. H.

K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
[CrossRef]

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1∑+ and C 1∑+ Rydberg States of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

Varanasi, P.

G. T. T. Tejwani, P. Varanasi, “Calculation of collisionally broadened linewidths in the infrared bands of methane,” J. Chem. Phys. 55, 1075–1083 (1971).
[CrossRef]

Varghese, P. L.

X. Ouyang, P. L. Varghese, “Selection of spectral lines for combustion diagnostics,” Appl. Opt. 29, 4884–4890 (1990).
[CrossRef] [PubMed]

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426.
[CrossRef]

Yetter, R. A.

R. A. Yetter, F. L. Dryer, H. Rabtiz, “Complications of one-step kinetics for moist CO oxidation,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 749–760.

Annu. Rev. Fluid Mech. (1)

R. W. Bilger, “Turbulent diffusion flames,” Annu. Rev. Fluid Mech. 21, 101–135 (1989).
[CrossRef]

Appl. Opt. (4)

Appl. Optics (1)

S. M. Schoenung, R. K. Hanson, “Laser absorption sampling probes for temporally and spatially resolved combustion measurements,” Appl. Optics 21, 1767–1771 (1981).
[CrossRef]

Appl. Phys. B (1)

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Combust. Flame (4)

K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990).
[CrossRef]

R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980).
[CrossRef]

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

R. W. Bilger, “Reaction rates in diffusion flames,” Combust. Flame 30, 277–284 (1977).
[CrossRef]

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Chem. Phys. (2)

G. T. T. Tejwani, P. Varanasi, “Calculation of collisionally broadened linewidths in the infrared bands of methane,” J. Chem. Phys. 55, 1075–1083 (1971).
[CrossRef]

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1∑+ and C 1∑+ Rydberg States of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Brezinsky, “High temperature oxidation of aromatic hydrocarbons,” Prog. Energy Combust. Sci. 12, 1–24 (1986).
[CrossRef]

Other (8)

R. A. Yetter, F. L. Dryer, H. Rabtiz, “Complications of one-step kinetics for moist CO oxidation,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 749–760.

W. M. Pitts, “A long range plan for a research project on carbon monoxide production and prediction,” Natl. Inst. Stand. Technol. Int. Rep. 89-4185 (1989).

A. Hamins, J. H. Miller, George Washington University, Washington, D.C. 20052 (personal communication, 1989).

R. J. Santoro, Pennsylvania State University, University Park, Pa. 16801 (personal communication, 1989).

K. C. Smyth, National Institute of Standards and Technology, Gaithersburg, Md. 20838 (personal communication, 1990).

G. Guelachvili, K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426.
[CrossRef]

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental configuration for TDL diagnostic measurements in a Wolfhard–Parker slot diffusion flame.

Fig. 2
Fig. 2

Fit of the CO P(8) transition using a Lorentzian line-shape function. The spectrum was recorded at +3.0 mm from the center of the burner at a height of 9 mm above the burner’s surface. The temperature, determined from a prior thermocouple measurement,6 was 1157 K. The abscissa for these plots is the digital-to-analog converter count index for the current control module. The entire spectrum (1500 counts) corresponds to roughly 0.75 cm−1.

Fig. 3
Fig. 3

Profile of CO concentration determined from a series of P(8) direct-absorption spectra and P(11) second-harmonic spectra. The solid squares are concentrations from fits of spectral data in which the collision half-width was calculated from the local composition of the flame. The open squares were fits of spectra data in which the half-width was an adjustable parameter of the fit. These data are compared with profiles of CO determined from LIF (diamonds) and quartz microprobe–mass spectrometer (QM/MS) measurements (triangles).

Fig. 4
Fig. 4

Simultaneous fits of the CO P(4) (1 ← 0, 2127.68 cm−1) and R(2) (2 ← 1, 2128.01 cm−1) lines at 9 mm HAB and 3 mm from the burner center line.

Fig. 5
Fig. 5

Comparison of the temperature profile at 9 mm HAB determined from radiation-corrected thermocouple measurements (solid curve), direct-absorption TDL (diamonds) and second-harmonic TDL (triangles).

Fig. 6
Fig. 6

Calculated CO and temperature profiles at 9 mm above the burner surface, illustrating location of end flames. The label LATERAL POSITION refers to the direction perpendicular to the fuel and air slots.

Fig. 7
Fig. 7

Calculated absorbances at line center for the P(4) 1 ← 0 and R(2) 2 ← 1 lines. In each case the trace with symbols is the extinction for a flame with end flames. The trace without symbols is the calculated extinction for a flame without end flames.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d [ CO ] d t = k OV · [ CO ] [ O 2 ] 0.25 [ H 2 O ] 0.5 ,
T v = ( I I ° ) = exp [ - S g ( v - v ° ) P j L ] .
S line ( T ) = S band ( T ref ) ( T ref T ) ( E v , J - E v , J E v , 0 - E v , 0 ) × ( v + 1 ) exp ( - E v , J k T ) × [ 1 - exp ( - E v , J - E v , J k T ) ] J Q T ,
E v , J h c = ( v + 1 2 ) ω e - ( v + 1 2 ) 2 ω e x e + J ( J + 1 ) B e - J ( J + 1 ) ( v + 1 2 ) α e - [ J ( J + 1 ) ] 2 D e ,
a = ( ln 2 ) 0.5 Δ v C Δ v D ,
Δ v D = 7.16 × 10 - 7 ( T M ) 1 / 2 v o ,
Δ v C = 2 γ C ( cm - 1 atm - 1 ) ( 300 T ) n P ( atm ) .
ln ( I ° I ) = ln [ I ° ( I ° - x ) ] x I ° ,
x = H 2 ( v - v ° ) S g ( v - v ° ) P j L I ° ,

Metrics