Abstract

An iterative lidar-signal inversion method is presented that is valid for two-component (molecular and aerosol) scattering atmospheres. The iterative procedure transforms the original lidar signal, thereby making it possible to use the lidar-equation solution for a single-component atmosphere. In a manner analogous to Fernald’s approach, the molecular extinction profile is used as a foundation for the boundary-condition determination, but the inversion procedure can be performed with either constant or variable (range-dependent) phase functions. A specific region in the measured range is located at which the ratio of the aerosol to molecular extinction coefficients is a minimum as determined by an examination of the lidar-signal profile; for this region boundary conditions are specified.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription