Abstract

An iterative lidar-signal inversion method is presented that is valid for two-component (molecular and aerosol) scattering atmospheres. The iterative procedure transforms the original lidar signal, thereby making it possible to use the lidar-equation solution for a single-component atmosphere. In a manner analogous to Fernald’s approach, the molecular extinction profile is used as a foundation for the boundary-condition determination, but the inversion procedure can be performed with either constant or variable (range-dependent) phase functions. A specific region in the measured range is located at which the ratio of the aerosol to molecular extinction coefficients is a minimum as determined by an examination of the lidar-signal profile; for this region boundary conditions are specified.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Jinhuan, “Sensitivity of lidar equation solution to boundary values and determination of the values,” Adv. Atmos. Sci. 2, 229–241 (1988).
    [CrossRef]
  2. D. C. Knauss, “Significance of the boundary value term in the Klett lidar inversion formula,” Appl. Opt. 21, 4194 (1982).
    [CrossRef] [PubMed]
  3. R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meteorol. Soc. 92, 220 (1966).
    [CrossRef]
  4. W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
    [CrossRef]
  5. I. L. Gaumet, A. Petitpa, “Lidar transmissometer visibility comparisons over slant and horizontal paths,” J. Appl. Meteorol. 21, 683–694 (1982).
    [CrossRef]
  6. G. J. Kunz, “Vertical atmospheric profiles measured with lidar,” Appl. Opt. 22, 1955–1957 (1983).
    [CrossRef] [PubMed]
  7. G. de Leeuw, G. J. Kunz, C. W. Lamberts, “Humidity effects on the backscatter/extinction ratio,” Appl. Opt. 25, 3971–3974 (1986).
    [CrossRef] [PubMed]
  8. E. W. Barret, O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500–515 (1967).
    [CrossRef]
  9. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” Appl. Opt. 11, 482–489 (1972).
  10. V. A. Kovalev, “Determination of atmospheric transparency using short light pulses,” in Proceedings of the Main Geophysical Observatory, E. A. Poljakova, ed. (Main Geophysical Observatory, Leningrad, 1972), No. 279, pp. 194–200.
  11. V. A. Kovalev, “On a novel method of lidar return processing,” in Proceedings of the Main Geophysical Observatory, E. A. Poljakova, ed. (Main Geophysical Observatory, Leningrad, 1973), No. 312, pp. 128–133.
  12. V. E. Zuev, G. M. Krekov, M. M. Krekova, “Lidar sensing of the atmospheric aerosol (theoretical aspects),” in Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Siberian Section, USSR Academy of Sciences, Novosibirsk, USSR, 1978), pp. 3–46.
  13. Yu. S. Balin, S. I. Kavkyanov, G. M. Krekov, I. A. Rasenkov, “Noise-proof inversion of lidar equation,” Opt. Lett. 12, 13–15 (1987).
    [CrossRef] [PubMed]
  14. J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
    [CrossRef] [PubMed]
  15. V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Retrieving the profile of attenuation factor from data of one-angle lidar sensing,” Atmos. Opt. 4, 588–592 (1991).
  16. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  17. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
    [CrossRef] [PubMed]
  18. J. M. Mulders, “Algorithm for inverting lidar returns: comment,” Appl. Opt. 23, 2855–2856 (1984).
    [CrossRef] [PubMed]
  19. J. A. Ferguson, D. H. Stephens, “Algorithm for inverting lidar returns,” Appl. Opt. 22, 3673–3675 (1983).
    [CrossRef] [PubMed]
  20. H. G. Huges, J. A. Ferguson, D. H. Stephens, “Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction,” Appl. Opt. 24, 1609–1613 (1985).
    [CrossRef]
  21. Y. Sasano, H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23, 11–13 (1984).
    [CrossRef]
  22. E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observations of obscurant events,” Appl. Opt. 25, 678–684 (1986).
    [CrossRef] [PubMed]
  23. S. R. Pal, A. G. Cunningham, A. I. Carswell, “Lidar studies of the tropospheric extinction coefficient,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 152–153.
  24. W. J. Lentz, “The visioceilometer: a portable visibility and cloud ceiling height lidar,” in U.S. Army Electronics Research and Development Command Rep. ASL-TR-0105, (U.S. Army Atmospheric Science Laboratory, White Sands Missile Range, N.M., 1982).
  25. W. Carnuth, R. Reiter, “Cloud extinction profile measurements by lidar using Klett’s inversion method,” Appl. Opt. 25, 2899–2907 (1986).
    [CrossRef] [PubMed]
  26. J. D. Lindberg, W. J. Lentz, E. M. Measure, R. Rubio, “Lidar determinations of extinction in stratus clouds,” Appl. Opt. 23, 2172–2177 (1984).
    [CrossRef] [PubMed]
  27. G. Tonna, “Backscattering, extinction, and liquid water content in fog: a detailed study of their relations for use in lidar systems,” Appl. Opt. 30, 1132–1140 (1991).
    [CrossRef] [PubMed]
  28. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
    [CrossRef] [PubMed]
  29. E. W. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  30. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  31. V. A. Kovalev, G. N. Baldenkov, V. I. Kozintsev, “On the relation between total- and backscattering in the atmosphere,” Newsletter Acad. Sci. USSR, 23, 611–615 (1987).
  32. T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
    [CrossRef]
  33. K. Parameswaran, K. O. Rose, B. V. K. Murthy, “Relationship between backscattering and extinction coefficients of aerosols with application to turbid atmosphere,” Appl. Opt. 30, 3059–3071 (1991).
    [CrossRef] [PubMed]
  34. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
    [CrossRef]
  35. B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3305 (1985).
    [CrossRef]
  36. R. H. Dubinsky, A. I. Carswell, S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).
    [CrossRef] [PubMed]
  37. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observation,” Appl. Opt. 28, 1670–1679 (1989).
    [CrossRef] [PubMed]
  38. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
    [CrossRef]
  39. J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
    [CrossRef]
  40. V. A. Kovalev, Visibility at the Atmosphere and Its Determination, 1st ed. (Gidrometeoizdat, Leningrad, 1988), Chap. 5, p. 147.
  41. V. M. Ignatenko, V. A. Kovalev, “Error analysis of extinction coefficient measurements using the asymptotic method,” in Proceedings of the Main Geophysical Observatory, G. P. Guschin, ed. (Main Physical Observatory, Leningrad, 1985), No. 499, pp. 85–90.
  42. V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Determination of slant visual range/visual contact height with lidar: basic principles, field test results,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 250–253.
  43. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  44. M. Kaestner, “Lidar inversion with variable backscatter extinction ratios: comment,” Appl. Opt. 25, 833–835 (1986).
    [CrossRef] [PubMed]
  45. V. A. Kovalev, H. Moosmuller, “A variable phase function approach for the inversion of lidar return signals,” in Proceedings of the Sixteenth International Laser Radar Conference, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), Part 2, pp. 607–610.
  46. H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).
  47. D. W. Derek, J. R. Hummel, “Review of inversion techniques for spaceborne lidar systems,” in Rep. AFGL-TR-86-0266 (U.S. Air Force Geophysical Laboratory, Cambridge, Mass., 1986).

1991

1989

1988

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
[CrossRef]

J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
[CrossRef] [PubMed]

Q. Jinhuan, “Sensitivity of lidar equation solution to boundary values and determination of the values,” Adv. Atmos. Sci. 2, 229–241 (1988).
[CrossRef]

1987

Yu. S. Balin, S. I. Kavkyanov, G. M. Krekov, I. A. Rasenkov, “Noise-proof inversion of lidar equation,” Opt. Lett. 12, 13–15 (1987).
[CrossRef] [PubMed]

V. A. Kovalev, G. N. Baldenkov, V. I. Kozintsev, “On the relation between total- and backscattering in the atmosphere,” Newsletter Acad. Sci. USSR, 23, 611–615 (1987).

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

1986

1985

1984

1983

1982

D. C. Knauss, “Significance of the boundary value term in the Klett lidar inversion formula,” Appl. Opt. 21, 4194 (1982).
[CrossRef] [PubMed]

I. L. Gaumet, A. Petitpa, “Lidar transmissometer visibility comparisons over slant and horizontal paths,” J. Appl. Meteorol. 21, 683–694 (1982).
[CrossRef]

1981

1980

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

1972

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” Appl. Opt. 11, 482–489 (1972).

1969

W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
[CrossRef]

1967

E. W. Barret, O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500–515 (1967).
[CrossRef]

1966

R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meteorol. Soc. 92, 220 (1966).
[CrossRef]

Apte, M. V.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
[CrossRef]

Baldenkov, G. N.

V. A. Kovalev, G. N. Baldenkov, V. I. Kozintsev, “On the relation between total- and backscattering in the atmosphere,” Newsletter Acad. Sci. USSR, 23, 611–615 (1987).

Balin, Yu. S.

Barret, E. W.

E. W. Barret, O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500–515 (1967).
[CrossRef]

Ben-David, A.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
[CrossRef]

Ben-Dov, O.

E. W. Barret, O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500–515 (1967).
[CrossRef]

Bissonnette, L. R.

Bristow, M. P.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Browell, E. V.

Browell, E. W.

Bundy, D. H.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Carnuth, W.

Carswell, A. I.

R. H. Dubinsky, A. I. Carswell, S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).
[CrossRef] [PubMed]

S. R. Pal, A. G. Cunningham, A. I. Carswell, “Lidar studies of the tropospheric extinction coefficient,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 152–153.

Chylek, P.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Collis, R. T. H.

W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
[CrossRef]

R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meteorol. Soc. 92, 220 (1966).
[CrossRef]

Cunningham, A. G.

S. R. Pal, A. G. Cunningham, A. I. Carswell, “Lidar studies of the tropospheric extinction coefficient,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 152–153.

de Leeuw, G.

Derek, D. W.

D. W. Derek, J. R. Hummel, “Review of inversion techniques for spaceborne lidar systems,” in Rep. AFGL-TR-86-0266 (U.S. Air Force Geophysical Laboratory, Cambridge, Mass., 1986).

Diebel, D.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Dubinsky, R. H.

Edmonds, C. M.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Evans, B. T. N.

Ferguson, J. A.

Fernald, F. G.

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” Appl. Opt. 11, 482–489 (1972).

Gaumet, I. L.

I. L. Gaumet, A. Petitpa, “Lidar transmissometer visibility comparisons over slant and horizontal paths,” J. Appl. Meteorol. 21, 683–694 (1982).
[CrossRef]

Grandy, W. T.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Haas, R. P.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Ham, C.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Herman, B. M.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” Appl. Opt. 11, 482–489 (1972).

Huges, H. G.

Hummel, J. R.

D. W. Derek, J. R. Hummel, “Review of inversion techniques for spaceborne lidar systems,” in Rep. AFGL-TR-86-0266 (U.S. Air Force Geophysical Laboratory, Cambridge, Mass., 1986).

Ignatenko, V. M.

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Retrieving the profile of attenuation factor from data of one-angle lidar sensing,” Atmos. Opt. 4, 588–592 (1991).

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Determination of slant visual range/visual contact height with lidar: basic principles, field test results,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 250–253.

V. M. Ignatenko, V. A. Kovalev, “Error analysis of extinction coefficient measurements using the asymptotic method,” in Proceedings of the Main Geophysical Observatory, G. P. Guschin, ed. (Main Physical Observatory, Leningrad, 1985), No. 499, pp. 85–90.

Ismail, S.

Jennings, S. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Jinhuan, Q.

Q. Jinhuan, “Sensitivity of lidar equation solution to boundary values and determination of the values,” Adv. Atmos. Sci. 2, 229–241 (1988).
[CrossRef]

Kaestner, M.

Kavkyanov, S. I.

Klett, J. D.

Knauss, D. C.

Kovalev, V. A.

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Retrieving the profile of attenuation factor from data of one-angle lidar sensing,” Atmos. Opt. 4, 588–592 (1991).

V. A. Kovalev, G. N. Baldenkov, V. I. Kozintsev, “On the relation between total- and backscattering in the atmosphere,” Newsletter Acad. Sci. USSR, 23, 611–615 (1987).

V. A. Kovalev, “Determination of atmospheric transparency using short light pulses,” in Proceedings of the Main Geophysical Observatory, E. A. Poljakova, ed. (Main Geophysical Observatory, Leningrad, 1972), No. 279, pp. 194–200.

V. A. Kovalev, “On a novel method of lidar return processing,” in Proceedings of the Main Geophysical Observatory, E. A. Poljakova, ed. (Main Geophysical Observatory, Leningrad, 1973), No. 312, pp. 128–133.

V. A. Kovalev, H. Moosmuller, “A variable phase function approach for the inversion of lidar return signals,” in Proceedings of the Sixteenth International Laser Radar Conference, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), Part 2, pp. 607–610.

V. M. Ignatenko, V. A. Kovalev, “Error analysis of extinction coefficient measurements using the asymptotic method,” in Proceedings of the Main Geophysical Observatory, G. P. Guschin, ed. (Main Physical Observatory, Leningrad, 1985), No. 499, pp. 85–90.

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Determination of slant visual range/visual contact height with lidar: basic principles, field test results,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 250–253.

V. A. Kovalev, Visibility at the Atmosphere and Its Determination, 1st ed. (Gidrometeoizdat, Leningrad, 1988), Chap. 5, p. 147.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Kozintsev, V. I.

V. A. Kovalev, G. N. Baldenkov, V. I. Kozintsev, “On the relation between total- and backscattering in the atmosphere,” Newsletter Acad. Sci. USSR, 23, 611–615 (1987).

Krekov, G. M.

Yu. S. Balin, S. I. Kavkyanov, G. M. Krekov, I. A. Rasenkov, “Noise-proof inversion of lidar equation,” Opt. Lett. 12, 13–15 (1987).
[CrossRef] [PubMed]

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Lidar sensing of the atmospheric aerosol (theoretical aspects),” in Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Siberian Section, USSR Academy of Sciences, Novosibirsk, USSR, 1978), pp. 3–46.

Krekova, M. M.

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Lidar sensing of the atmospheric aerosol (theoretical aspects),” in Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Siberian Section, USSR Academy of Sciences, Novosibirsk, USSR, 1978), pp. 3–46.

Kunz, G. J.

Lamberts, C. W.

Lentz, W. J.

J. D. Lindberg, W. J. Lentz, E. M. Measure, R. Rubio, “Lidar determinations of extinction in stratus clouds,” Appl. Opt. 23, 2172–2177 (1984).
[CrossRef] [PubMed]

W. J. Lentz, “The visioceilometer: a portable visibility and cloud ceiling height lidar,” in U.S. Army Electronics Research and Development Command Rep. ASL-TR-0105, (U.S. Army Atmospheric Science Laboratory, White Sands Missile Range, N.M., 1982).

Lindberg, J. D.

Livingston, J. M.

McElroy, J. L.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Measure, E. M.

Moosmuller, H.

V. A. Kovalev, H. Moosmuller, “A variable phase function approach for the inversion of lidar return signals,” in Proceedings of the Sixteenth International Laser Radar Conference, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), Part 2, pp. 607–610.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Mulders, J. M.

Murthy, B. V. K.

Nakane, H.

Pal, S. R.

R. H. Dubinsky, A. I. Carswell, S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).
[CrossRef] [PubMed]

S. R. Pal, A. G. Cunningham, A. I. Carswell, “Lidar studies of the tropospheric extinction coefficient,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 152–153.

Parameswaran, K.

Petitpa, A.

I. L. Gaumet, A. Petitpa, “Lidar transmissometer visibility comparisons over slant and horizontal paths,” J. Appl. Meteorol. 21, 683–694 (1982).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Rasenkov, I. A.

Reagan, J. A.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” Appl. Opt. 11, 482–489 (1972).

Reiter, R.

Rose, K. O.

Rubio, R.

Rybakov, E. E.

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Retrieving the profile of attenuation factor from data of one-angle lidar sensing,” Atmos. Opt. 4, 588–592 (1991).

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Determination of slant visual range/visual contact height with lidar: basic principles, field test results,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 250–253.

Sasano, Y.

Shipley, S. T.

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Stephens, D. H.

Takamura, T.

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

Tonna, G.

Turner, R. M.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

Uthe, E. E.

E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observations of obscurant events,” Appl. Opt. 25, 678–684 (1986).
[CrossRef] [PubMed]

W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
[CrossRef]

Viezee, W.

W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
[CrossRef]

Weinman, J. A.

Zuev, V. E.

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Lidar sensing of the atmospheric aerosol (theoretical aspects),” in Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Siberian Section, USSR Academy of Sciences, Novosibirsk, USSR, 1978), pp. 3–46.

Adv. Atmos. Sci.

Q. Jinhuan, “Sensitivity of lidar equation solution to boundary values and determination of the values,” Adv. Atmos. Sci. 2, 229–241 (1988).
[CrossRef]

Aerosol Sci. Technol.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona,” Aerosol Sci. Technol. 8, 215–226 (1988).
[CrossRef]

Appl. Opt.

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

M. Kaestner, “Lidar inversion with variable backscatter extinction ratios: comment,” Appl. Opt. 25, 833–835 (1986).
[CrossRef] [PubMed]

K. Parameswaran, K. O. Rose, B. V. K. Murthy, “Relationship between backscattering and extinction coefficients of aerosols with application to turbid atmosphere,” Appl. Opt. 30, 3059–3071 (1991).
[CrossRef] [PubMed]

D. C. Knauss, “Significance of the boundary value term in the Klett lidar inversion formula,” Appl. Opt. 21, 4194 (1982).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” Appl. Opt. 11, 482–489 (1972).

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
[CrossRef] [PubMed]

J. M. Mulders, “Algorithm for inverting lidar returns: comment,” Appl. Opt. 23, 2855–2856 (1984).
[CrossRef] [PubMed]

J. A. Ferguson, D. H. Stephens, “Algorithm for inverting lidar returns,” Appl. Opt. 22, 3673–3675 (1983).
[CrossRef] [PubMed]

H. G. Huges, J. A. Ferguson, D. H. Stephens, “Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction,” Appl. Opt. 24, 1609–1613 (1985).
[CrossRef]

Y. Sasano, H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23, 11–13 (1984).
[CrossRef]

E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observations of obscurant events,” Appl. Opt. 25, 678–684 (1986).
[CrossRef] [PubMed]

W. Carnuth, R. Reiter, “Cloud extinction profile measurements by lidar using Klett’s inversion method,” Appl. Opt. 25, 2899–2907 (1986).
[CrossRef] [PubMed]

J. D. Lindberg, W. J. Lentz, E. M. Measure, R. Rubio, “Lidar determinations of extinction in stratus clouds,” Appl. Opt. 23, 2172–2177 (1984).
[CrossRef] [PubMed]

G. Tonna, “Backscattering, extinction, and liquid water content in fog: a detailed study of their relations for use in lidar systems,” Appl. Opt. 30, 1132–1140 (1991).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
[CrossRef] [PubMed]

E. W. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef] [PubMed]

G. J. Kunz, “Vertical atmospheric profiles measured with lidar,” Appl. Opt. 22, 1955–1957 (1983).
[CrossRef] [PubMed]

G. de Leeuw, G. J. Kunz, C. W. Lamberts, “Humidity effects on the backscatter/extinction ratio,” Appl. Opt. 25, 3971–3974 (1986).
[CrossRef] [PubMed]

J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
[CrossRef] [PubMed]

B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3305 (1985).
[CrossRef]

R. H. Dubinsky, A. I. Carswell, S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observation,” Appl. Opt. 28, 1670–1679 (1989).
[CrossRef] [PubMed]

Atmos. Opt.

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Retrieving the profile of attenuation factor from data of one-angle lidar sensing,” Atmos. Opt. 4, 588–592 (1991).

J. Appl. Meteorol.

E. W. Barret, O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500–515 (1967).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
[CrossRef]

I. L. Gaumet, A. Petitpa, “Lidar transmissometer visibility comparisons over slant and horizontal paths,” J. Appl. Meteorol. 21, 683–694 (1982).
[CrossRef]

J. Geophys. Res.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Newsletter Acad. Sci. USSR

V. A. Kovalev, G. N. Baldenkov, V. I. Kozintsev, “On the relation between total- and backscattering in the atmosphere,” Newsletter Acad. Sci. USSR, 23, 611–615 (1987).

Opt. Lett.

Opt. Quantum Electron.

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

Q. J. R. Meteorol. Soc.

R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meteorol. Soc. 92, 220 (1966).
[CrossRef]

Other

V. A. Kovalev, “Determination of atmospheric transparency using short light pulses,” in Proceedings of the Main Geophysical Observatory, E. A. Poljakova, ed. (Main Geophysical Observatory, Leningrad, 1972), No. 279, pp. 194–200.

V. A. Kovalev, “On a novel method of lidar return processing,” in Proceedings of the Main Geophysical Observatory, E. A. Poljakova, ed. (Main Geophysical Observatory, Leningrad, 1973), No. 312, pp. 128–133.

V. E. Zuev, G. M. Krekov, M. M. Krekova, “Lidar sensing of the atmospheric aerosol (theoretical aspects),” in Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Siberian Section, USSR Academy of Sciences, Novosibirsk, USSR, 1978), pp. 3–46.

S. R. Pal, A. G. Cunningham, A. I. Carswell, “Lidar studies of the tropospheric extinction coefficient,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 152–153.

W. J. Lentz, “The visioceilometer: a portable visibility and cloud ceiling height lidar,” in U.S. Army Electronics Research and Development Command Rep. ASL-TR-0105, (U.S. Army Atmospheric Science Laboratory, White Sands Missile Range, N.M., 1982).

V. A. Kovalev, H. Moosmuller, “A variable phase function approach for the inversion of lidar return signals,” in Proceedings of the Sixteenth International Laser Radar Conference, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), Part 2, pp. 607–610.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 253–255 (1991).

D. W. Derek, J. R. Hummel, “Review of inversion techniques for spaceborne lidar systems,” in Rep. AFGL-TR-86-0266 (U.S. Air Force Geophysical Laboratory, Cambridge, Mass., 1986).

V. A. Kovalev, Visibility at the Atmosphere and Its Determination, 1st ed. (Gidrometeoizdat, Leningrad, 1988), Chap. 5, p. 147.

V. M. Ignatenko, V. A. Kovalev, “Error analysis of extinction coefficient measurements using the asymptotic method,” in Proceedings of the Main Geophysical Observatory, G. P. Guschin, ed. (Main Physical Observatory, Leningrad, 1985), No. 499, pp. 85–90.

V. A. Kovalev, E. E. Rybakov, V. M. Ignatenko, “Determination of slant visual range/visual contact height with lidar: basic principles, field test results,” in Proceedings of the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Tomsk, USSR, 1990), Part 1, pp. 250–253.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Inversion of the simulated σp profile shown as curve 1 by means of the conventional method for a single-component atmosphere (curve 2) and by means of the iteration procedure (curve 3). (b) Inversion of the same σp profile (curve 1) by means of the same iteration procedure but including the effect of an incorrect estimate of Pπ,p. The particulate phase function used for the calculations is Pπ,p = 0.03 sr−1. The derived profile of σp shown as curve 2 is retrieved with Pπ,p = 0.01 sr−1, and the profile shown as curve 3 is obtained with Pπ,p = 0.05 sr−1. (c) Inversion of the same original σp profile (curve 1), but including effects of an incorrect estimate of Tmax2. The value of Tmax2 used for the simulation is 0.31. The derived profile of σp shown as curve 2 is retrieved with Tmax2 = 0.25, whereas that with Tmax2 = 0.37 is shown as curve 3.

Fig. 2
Fig. 2

(a) Dependence of the retrieved σp profiles on boundary values. Curve 1 shows the simulated σp profile where the actual boundary value is Rb = 1. Curves 2–5 show the retrieved σp profile with Rb = 0, Rb = 0.5, Rb = 1.0, and Rb = 2.0, respectively. (b) Curve 1: the simulated σp profile where the actual boundary value is Rb = 0.1; Rb values for curves 2–5 are the same as those for the corresponding curves in (a).

Fig. 3
Fig. 3

(a) Inversion of the simulated σp profile shown in Fig. 2(a) as curve 1, where the lidar signal is corrupted with noise. The simulated lidar signal is shown as curve 1. Curve 2 is the same but includes noise. (b) Inversion of the simulated σp profile shown in Fig. 2(b) as curve 1, where the lidar signal is corrupted with noise. The simulated lidar signal is shown as curve 1. Curve 2 is the same but includes noise. (c) Inversion of the simulated σp profile with the signals shown in (a). The derived σp profile is shown as curve 2, whereas the simulated σp profile is shown as curve 1. (d) Inversion of the simulated σp profile with the signals shown in (b). The derived σp profile is shown as curve 2, whereas the simulated σp profile is shown as curve 1.

Fig. 4
Fig. 4

(a) Example of the inversion stability where the lidar signal is corrupted with excessive noise. Curve 1 shows the simulated lidar signal; curve 2 shows the same but includes noise. (b) Curve 1 shows the simulated σp profile, and curve 2 shows the derived σp profile.

Fig. 5
Fig. 5

(a) Analytical dependencies for the particulate phase function on σp as determined from Eq. (30) with different values for C3 and σ0. Curve 1 shows experimental data from Ref. 31. The approximated dependencies of Pπ,p on σp with C3 = 0.095 km0.5 are shown as curves 2–5. The dependencies of Pπ,p, on σp in curves 2–5 are σ0 = 0.00305 km−1, σ0 = 0.0055 km−1, σ0 = 0.0115 km−1, and σ0 = 0.03 km−1, respectively. (b) Analytical dependencies of the particulate phase function on σp as determined from Eq. (30) with different values of C3 and σ0. Curve 1 is the same as in (a), but curves 2–5 are all determined with σ0 = 0.0055 km−1. Curves 2–5 show the dependence of Pπ,p on σp with C3 = 0.05 km0.5, 0.065 km0.5, 0.08 km0.5, and 0.095 km0.5, respectively.

Fig. 6
Fig. 6

(a) Inversion of the simulated σp profile shown as curve 1 with constant and variable phase functions. The profile derived with variable Pπ,p is shown as curve 2. The profiles derived with Pπ,p = const are shown as curves 3–5. Curves 3–5 show the profiles with Pπ,p = 0.015 sr−1, Pπ,p = 0.03 sr−1, and Pπ,p = 0.05 sr−1, respectively. (b) The dependencies, Pπ,p(r), used for the simulation shown in (a). The phase-function dependence used for lidar-signal simulation is shown as curve 1, whereas that used for the σp profile extraction is shown as curve 2.

Fig. 7
Fig. 7

Vertical extinction-coefficient profiles at 359.6 nm derived in successive 15-s time periods on May 13, 1992, in the Detroit–Lake Huron area. Plane altitude is 2500 m. Each displayed profile is the average of 300 individual shots. The a priori chosen Rb value is Rb = 0. The interval between tick marks on the horizontal axis corresponds to an extinction coefficient of 0.5 km−1.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = C 1 B ( r ) r 2 exp [ - 2 0 r σ ( r ) d r ] ,
B = C 2 σ k ,
P ( r ) = C 1 C 2 T 0 2 [ σ ( r ) ] k r 2 exp [ - 2 r 0 r σ ( r ) d r ] ,
σ ( r ) = S ( r ) C 1 C 2 T 0 2 - 2 I ( r 0 , r ) ,
I ( r 0 , r ) = r 0 r S ( x ) d x .
I max = r 0 r m S ( x ) d x = 1 2 C 1 C 2 T 0 2 ( 1 - T max 2 ) ,
σ ( r ) = 0.5 S ( r ) I max 1 - T max 2 - I ( r 0 , r ) .
T max 2 = S ( r n ) - 2 σ ( r n ) [ I max - I ( r 0 , r n ) ] S ( r n ) + 2 σ ( r n ) I max .
T max 2 = S ( r m ) S ( r 0 ) γ s ,
γ s = σ ( r 0 ) σ ( r m ) .
σ ( r ) ~ 0.5 S ( r ) I max 1 - S ( r m ) / S ( r 0 ) - I ( r 0 , r ) .
B ( r ) = B m ( r ) + B p ( r ) = P π , m σ m ( r ) + P π , p σ p ( r ) ,
σ p ( 1 ) ( r ) = 0.5 S ( r ) I max 1 - T max , 1 2 - I ( r 0 , r ) - σ m ( r ) ,
Y ( 1 ) ( r ) = σ m ( r ) + σ p ( 1 ) ( r ) σ m ( r ) + P π , p P π , m σ p ( 1 ) ( r ) ,
S ( 1 ) ( r ) = S ( r ) Y ( 1 ) ( r ) ,
σ p ( 2 ) ( r ) = 0.5 S ( 1 ) ( r ) I max ( 1 ) 1 - T max , 2 2 - I ( 1 ) ( r 0 , r ) - σ m ( r ) .
T max 2 = S ( r m ) S ( r 0 ) γ t ,
γ t = P π , m σ m ( r 0 ) + P π , p σ p ( r 0 ) P π , m σ m ( r m ) + P π , p σ p ( r m ) .
R ( r ) = σ p ( r ) σ m ( r ) .
T max 2 = 1 - 2 I max S ( r ) σ m ( r ) [ 1 + R ( r ) ] + 2 I ( r 0 , r ) .
R max ( r ) < S ( r ) 2 σ m ( r ) [ I max - I ( r 0 , r ) ] - 1.
γ ( r ) = 1 - 2 I max S ( r ) σ m ( r ) + 2 I ( r 0 , r ) .
σ p ( r ) = 0.5 S ( r ) I max 1 - γ min - I ( r 0 , r ) - σ m ( r ) .
γ ( r , R b ) = 1 - 2 I max S ( r ) σ m ( r ) ( 1 + R b ) + 2 I ( r 0 , r ) ,
σ p ( r , R b ) = 0.5 S ( r ) I max 1 - γ min ( R b ) - I ( r 0 , r ) - σ m ( r ) .
0 R b R b , max .
R b , max = min [ σ p ( r ) σ m ( r ) ]
B = C 2 σ k ( σ ) ,
k = k ( σ ) = k 0 + C 3 σ n ,
P π , p = C 2 ( σ + σ 0 ) k 0 + C 3 σ n ,
P π , p ( r ) j = b j P π , p ( r ) + ( b j - 1 ) P π , m R ( r ) ,

Metrics