Abstract

We show that optical properties of dense biological tissues can be determined from backscattered power curves measured by a low-coherence reflectometer. Our measurement approach is based on a first-order scattering theory that relates the backscattered power to the total and backscattering cross sections of scatterers in a turbid medium. As a validation of the technique, measurements were made with a commercially available reflectometer on suspensions of polystyrene microspheres having known optical properties. With this reflectometer, which employs a 1300-nm LED source that emits less than 20 μW, we found that skin tissues could be probed to a depth of nearly 1 mm. Estimates of optical coefficients of human dermis and of a variety of excised animal tissues are given.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurements of the optical properties of tissue in conjunction with photodynamic therapy

Annika M. K. Nilsson, Roger Berg, and Stefan Andersson-Engels
Appl. Opt. 34(21) 4609-4619 (1995)

Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study

Ya Su, X. Steve Yao, Zhihong Li, Zhuo Meng, Tiegen Liu, and Longzhi Wang
Biomed. Opt. Express 6(2) 500-513 (2015)

Precision of measurement of tissue optical properties with optical coherence tomography

Alexander I. Kholodnykh, Irina Y. Petrova, Kirill V. Larin, Massoud Motamedi, and Rinat O. Esenaliev
Appl. Opt. 42(16) 3027-3037 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription