Abstract

A combustion-driven downstream-mixing CO2 gasdynamic laser (GDL) is developed. When the total mass flow rate is ~ 2 kg/s and the combustion gas temperature is 1750 K, a small-signal gain coefficient of up to 0.6% cm−1 and a laser output power as high as 11 kW are measured. To explain the experimental values, a mixing loss factor was previously introduced into an analytical model incorporating the three-temperature kinetics model. In the present study, a numerial analysis and further experiments are carried out to clarify the mixing behavior of two supersonic flows in the laser cavity. A measuring method for the average static temperature in the laser resonator is adapted, and it is made clear that, with the current state of supersonic nozzle manufacturing technology, two supersonic flows will not mix well.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supersonic laser propulsion

Yurii Rezunkov and Alexander Schmidt
Appl. Opt. 53(31) I55-I62 (2014)

Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors

Fei Li, XiLong Yu, Hongbin Gu, Zhi Li, Yan Zhao, Lin Ma, Lihong Chen, and Xinyu Chang
Appl. Opt. 50(36) 6697-6707 (2011)

Analysis of lasing in gas-flow lasers with stable resonators

Boris Barmashenko, Dov Furman, and Salman Rosenwaks
Appl. Opt. 37(24) 5697-5705 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription