Abstract

Silver-halide crystalline infrared optical fibers are used for infrared evanescent-wave spectroscopy of solid materials. The fiber is pressed onto the material to be studied and good contact is achieved either by elastic or plastic deformation of the ductile fiber. The absorption-signal level is determined by the length and pressure of contact. This method allows convenient measurement of the absorption signals in large samples that cannot be introduced into an IR spectrometer and in materials that are practically opaque so that their spectra cannot be obtained by conventional transmission measurements. Examples of measurements of hard polymers are given, and the evanescent-wave spectra of polyethylene are compared with conventional transmission measurements.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), Chap. 2, pp. 13–65.
  2. J. Fahrenfort, “Attenuated total reflection. A new principle for the production of useful infrared spectra of organic compounds,” Spectrochim. Acta 17, 698–704 (1961).
    [CrossRef]
  3. W. N. Hansen, J. A. Horton, “Spectrometer cells for single and multiple internal reflection studies in ultraviolet, visible, near infrared and infrared spectral regions,” Ann. Chem. 36, 783–786 (1964).
    [CrossRef]
  4. S. Simhony, E. M. Kosower, A. Katzir, “A novel attenuated total internal reflection spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
    [CrossRef]
  5. T. Miyashita, T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18 (10), 1432–1450 (1982).
    [CrossRef]
  6. S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
    [CrossRef]
  7. E. Margalit, H. Dodiuk, E. M. Kosover, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 143–152 (1989).
  8. K. Takahashi, N. Yoshida, K. Yamauchi, “Silver halide infrared fibers,” Sumitomo Electr. Tech. Rev. 26, 102–109 (1987).
  9. A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

1988 (1)

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

1987 (1)

K. Takahashi, N. Yoshida, K. Yamauchi, “Silver halide infrared fibers,” Sumitomo Electr. Tech. Rev. 26, 102–109 (1987).

1986 (1)

S. Simhony, E. M. Kosower, A. Katzir, “A novel attenuated total internal reflection spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

1982 (1)

T. Miyashita, T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18 (10), 1432–1450 (1982).
[CrossRef]

1964 (1)

W. N. Hansen, J. A. Horton, “Spectrometer cells for single and multiple internal reflection studies in ultraviolet, visible, near infrared and infrared spectral regions,” Ann. Chem. 36, 783–786 (1964).
[CrossRef]

1961 (1)

J. Fahrenfort, “Attenuated total reflection. A new principle for the production of useful infrared spectra of organic compounds,” Spectrochim. Acta 17, 698–704 (1961).
[CrossRef]

Barkay, N.

A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Dodiuk, H.

E. Margalit, H. Dodiuk, E. M. Kosover, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 143–152 (1989).

Fahrenfort, J.

J. Fahrenfort, “Attenuated total reflection. A new principle for the production of useful infrared spectra of organic compounds,” Spectrochim. Acta 17, 698–704 (1961).
[CrossRef]

Hansen, W. N.

W. N. Hansen, J. A. Horton, “Spectrometer cells for single and multiple internal reflection studies in ultraviolet, visible, near infrared and infrared spectral regions,” Ann. Chem. 36, 783–786 (1964).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), Chap. 2, pp. 13–65.

Horton, J. A.

W. N. Hansen, J. A. Horton, “Spectrometer cells for single and multiple internal reflection studies in ultraviolet, visible, near infrared and infrared spectral regions,” Ann. Chem. 36, 783–786 (1964).
[CrossRef]

Katzir, A.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

S. Simhony, E. M. Kosower, A. Katzir, “A novel attenuated total internal reflection spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

E. Margalit, H. Dodiuk, E. M. Kosover, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 143–152 (1989).

A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Kosover, E. M.

E. Margalit, H. Dodiuk, E. M. Kosover, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 143–152 (1989).

Kosower, E. M.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

S. Simhony, E. M. Kosower, A. Katzir, “A novel attenuated total internal reflection spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

Manabe, T.

T. Miyashita, T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18 (10), 1432–1450 (1982).
[CrossRef]

Margalit, E.

E. Margalit, H. Dodiuk, E. M. Kosover, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 143–152 (1989).

Miyashita, T.

T. Miyashita, T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18 (10), 1432–1450 (1982).
[CrossRef]

Moser, F.

A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Sa’ar, A.

A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Schnitzer, I.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Simhony, S.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

S. Simhony, E. M. Kosower, A. Katzir, “A novel attenuated total internal reflection spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

Takahashi, K.

K. Takahashi, N. Yoshida, K. Yamauchi, “Silver halide infrared fibers,” Sumitomo Electr. Tech. Rev. 26, 102–109 (1987).

Yamauchi, K.

K. Takahashi, N. Yoshida, K. Yamauchi, “Silver halide infrared fibers,” Sumitomo Electr. Tech. Rev. 26, 102–109 (1987).

Yoshida, N.

K. Takahashi, N. Yoshida, K. Yamauchi, “Silver halide infrared fibers,” Sumitomo Electr. Tech. Rev. 26, 102–109 (1987).

Ann. Chem. (1)

W. N. Hansen, J. A. Horton, “Spectrometer cells for single and multiple internal reflection studies in ultraviolet, visible, near infrared and infrared spectral regions,” Ann. Chem. 36, 783–786 (1964).
[CrossRef]

Appl. Phys. Lett. (1)

S. Simhony, E. M. Kosower, A. Katzir, “A novel attenuated total internal reflection spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Miyashita, T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18 (10), 1432–1450 (1982).
[CrossRef]

J. Appl. Phys. (1)

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent-wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

Spectrochim. Acta (1)

J. Fahrenfort, “Attenuated total reflection. A new principle for the production of useful infrared spectra of organic compounds,” Spectrochim. Acta 17, 698–704 (1961).
[CrossRef]

Sumitomo Electr. Tech. Rev. (1)

K. Takahashi, N. Yoshida, K. Yamauchi, “Silver halide infrared fibers,” Sumitomo Electr. Tech. Rev. 26, 102–109 (1987).

Other (3)

A. Sa’ar, N. Barkay, F. Moser, I. Schnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and FibersV. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), Chap. 2, pp. 13–65.

E. Margalit, H. Dodiuk, E. M. Kosover, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 143–152 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a fiber-optic evanescent-wave sensor (FEWS) setup for solid-sample face measurements. The lower drawing is an enlargement of the circled area in the upper drawing.

Fig. 2
Fig. 2

FEWS spectra of commercial polymer plates made from (a) poly(methyl methacrylate) (PMMA), (b) polytetrafluoroethylene (Teflon), and (c) polycarbonate.

Fig. 3
Fig. 3

The evanescent-wave absorption coefficients of different resonant lines of polycarbonate as a function of the applied force, obtained by using (a) circular- and (b) planar-shaped fiber cross sections.

Fig. 4
Fig. 4

The spectrum of polyethylene obtained by (a) conventional transmission spectrum of 20 μm foil, and (b) FEWS spectrum of a foil wrapped on a planar-shaped fiber from two sides and pressed with two 60-mm-long plates.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( z , θ , λ ) = I ( 0 , θ , λ ) R ( θ , λ ) N ( θ , z )
R ( θ , λ ) = 1 - α ( λ ) d e ( θ , λ )
d e = 2 n 21 cos ψ 1 - n 21 2 d p , d e = 2 n 21 cos ψ ( 2 sin 2 ψ - n 21 2 ) ( 1 - n 21 2 ) ( sin 2 ψ - n 21 2 cos 2 ψ ) d p ,
d p = λ 1 2 π sin 2 ψ - n 21 2 ,
d e = ( d + d ) / 2
N ( θ , z ) = z tan θ t η ,
P ( L , λ ) = 0 θ max 2 π I ( 0 , θ , λ ) R ( λ , θ ) N ( θ , L ) sin θ d θ .
R ( λ , θ ) N ( θ , L ) = [ 1 - α ( λ ) d e ( λ , θ ) ] N ( θ , L ) 1 - α ( λ ) d e ( λ , θ ) N ( θ , L ) .
P ( L , λ ) = P ( 0 , λ ) [ 1 - λ α ( λ ) L η t Q ( n 1 , n 2 ) ] ,
Q ( n 1 , n 2 ) = 1 P ( 0 , λ ) 0 θ max 2 π I ( 0 , θ , λ ) × d e ( λ , θ , n 1 , n 2 ) λ tan θ sin θ d θ .
α ( λ 1 ) α ( λ 2 ) = R a ( λ 1 ) λ 2 R a ( λ 2 ) λ 1
A = - log ( 1 - R a ) 0.434 R a ,             R a 1.

Metrics