Abstract

The Δk lidar remote-sensing method is used in a laboratory wave tank demonstration to measure the frequency of surface waves as a function of their wavelength. The results clearly demonstrate the ability of the Δk lidar method to detect a single surface wave among an ensemble of waves present on the surface with a signal-to-noise ratio that agrees with the theory.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Palmer, “Delta k lidar sensing of the ocean surface,” Appl. Opt. 31, 4275–4279 (1992).
    [CrossRef] [PubMed]
  2. A. J. Palmer, “Delta-k lidar acoustic sounding of the atmosphere,” Appl. Opt. (to be published).
  3. A. J. Palmer, “Surface current mapping performance of bistatic and monostatic Δk radars,” IEEE Trans. Geosc. Remote Sensing 29, 1014–1016 (1991).
    [CrossRef]
  4. B. Kinsman, Wind Waves (Dover, New York, 1965), p. 175.
  5. F. Durst, A. Malling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).
  6. W. J. Plant, D. L. Schuler, “Remote sensing of the sea surface using one- and two-frequency microwave techniques,” Radio Sci. 15, 605–615 (1980).
    [CrossRef]
  7. J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne measurements of laser backscatter from the ocean surface,” Appl. Opt. 22, 2603–2618 (1983).
    [CrossRef] [PubMed]

1992

1991

A. J. Palmer, “Surface current mapping performance of bistatic and monostatic Δk radars,” IEEE Trans. Geosc. Remote Sensing 29, 1014–1016 (1991).
[CrossRef]

1983

1980

W. J. Plant, D. L. Schuler, “Remote sensing of the sea surface using one- and two-frequency microwave techniques,” Radio Sci. 15, 605–615 (1980).
[CrossRef]

Bufton, J. L.

Durst, F.

F. Durst, A. Malling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Hoge, F. E.

Kinsman, B.

B. Kinsman, Wind Waves (Dover, New York, 1965), p. 175.

Malling, A.

F. Durst, A. Malling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Palmer, A. J.

A. J. Palmer, “Delta k lidar sensing of the ocean surface,” Appl. Opt. 31, 4275–4279 (1992).
[CrossRef] [PubMed]

A. J. Palmer, “Surface current mapping performance of bistatic and monostatic Δk radars,” IEEE Trans. Geosc. Remote Sensing 29, 1014–1016 (1991).
[CrossRef]

A. J. Palmer, “Delta-k lidar acoustic sounding of the atmosphere,” Appl. Opt. (to be published).

Plant, W. J.

W. J. Plant, D. L. Schuler, “Remote sensing of the sea surface using one- and two-frequency microwave techniques,” Radio Sci. 15, 605–615 (1980).
[CrossRef]

Schuler, D. L.

W. J. Plant, D. L. Schuler, “Remote sensing of the sea surface using one- and two-frequency microwave techniques,” Radio Sci. 15, 605–615 (1980).
[CrossRef]

Swift, R. N.

Whitelaw, J. H.

F. Durst, A. Malling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Appl. Opt.

IEEE Trans. Geosc. Remote Sensing

A. J. Palmer, “Surface current mapping performance of bistatic and monostatic Δk radars,” IEEE Trans. Geosc. Remote Sensing 29, 1014–1016 (1991).
[CrossRef]

Radio Sci.

W. J. Plant, D. L. Schuler, “Remote sensing of the sea surface using one- and two-frequency microwave techniques,” Radio Sci. 15, 605–615 (1980).
[CrossRef]

Other

A. J. Palmer, “Delta-k lidar acoustic sounding of the atmosphere,” Appl. Opt. (to be published).

B. Kinsman, Wind Waves (Dover, New York, 1965), p. 175.

F. Durst, A. Malling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Δk lidar wave tank experiment.

Fig. 2
Fig. 2

Two Δk lidar scattering mechanisms: (a) surface scattering, (b) volume scattering.

Fig. 3
Fig. 3

Results of Δk lidar measurements of surface wave dispersion in a laboratory wave tank: (a) forward surface scattering from clear water, (b) backward volume scattering from a 4% solution of milk in water. The insets show the Δk resonance line in the power spectrum of the scattered radiation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω = ( g k + T k 3 / ρ ) 1 / 2 ,
T ( θ ) = 1 - R ( θ ) .
SNR total = 2 π 2 N 1 / 2 ( Γ glint / Γ Δ k ) m ( k SW ) 2 k SW 2 F ( k SW ) / A ,

Metrics