Abstract

Remote sensing of the health status of vegetation should be possible by using UV laser-induced fluorescence; nevertheless, the molecular origin of the leaf blue-green fluorescence emission is still unknown. In order to investigate possible relations of this fluorescence to the photosynthetic apparatus, we looked for its intensity changes after the addition of actinic light. The lack of any changes outside the chlorophyll fluorescence bands (Kautsky effect) was further investigated by collecting spectra from cell, protoplast, and chloroplast suspensions. These spectra led us to ascribe most of the blue-green laser-induced fluorescence that is detectable on a leaf by UV laser excitation to extrachloroplastic compartments. In active chloroplast suspensions blue fluorescence from photosynthetically reduced nicotinamide adenine dinucleotide phosphate (NADPH) has been detected and should be characterized by time-resolved fluorescence techniques.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Butler, M. Kitajima, “Fluorescence quenching in photosystem II of chloroplasts,” Biochim. Biophys. Acta 376, 116–125 (1975).
    [CrossRef] [PubMed]
  2. M. Bradbury, N. R. Baker, “Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contribution of photochemical and nonphotochemical quenching,” Proc. R. Soc. London Ser. B 220, 251–264 (1983).
    [CrossRef]
  3. U. Schreiber, U. Schliwa, “A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants,” Photosynth. Res. 11, 173–182 (1987).
    [CrossRef]
  4. H. K. Lichtenthaler, “In vivo chlorophyll fluorescence as a tool for stress detection in plants,” in Applications of Chlorophyll Fluorescence, H. K. Lichtenthaler, ed. (Kluwer, Dordrecht, The Netherlands, 1988), pp. 129–142.
  5. J. Barber, S. Malkin, A. Telfer, “The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem two reaction centre,” Philos. Trans. R. Soc. London Ser. B 323, 1–13 (1989).
    [CrossRef]
  6. E. W. Chappelle, F. M. Wood, J. E. McMurtrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1: A technique for remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–138 (1984).
    [CrossRef] [PubMed]
  7. E. W. Chappelle, D. L. Williams, R. F. Nelson, J. E. McMurtrey, “Laser may help in remote assessment of vegetation,” Laser Focus 25(6), 123–132 (1989).
  8. E. W. Chappelle, J. E. McMurtrey, F. M. Wood, W. W. Newcomb, “Laser induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–142 (1984).
    [CrossRef] [PubMed]
  9. E. W. Chappelle, F. M. Wood, W. W. Newcomb, J. E. McMurtrey, “Laser induced fluorescence of green plants. 3: LIF spectral signature of five major plant types,” Appl. Opt. 24, 74–80 (1985).
    [CrossRef] [PubMed]
  10. M. Senorer, “The nanosecond decay of variable chlorophyll fluorescence in leaves of higher plants,” Biochim. Biophys. Acta 849, 374–380 (1986).
    [CrossRef]
  11. L. A. Canas, A. M. Wyssmann, M. C. Benbadis, “Isolation, culture and division of olive (Olea europea L.) protoplasts,” Plant Cell Rep. 6, 369–371 (1987).
    [CrossRef]
  12. G. Mourioux, R. Douce, “Slow passive diffusion and orthophosphate between intact isolated chloroplasts and suspending medium,” Plant Physiol. 67, 470–473 (1981).
    [CrossRef] [PubMed]
  13. D. A. Walker, “Preparation of higher plant chloroplasts,” Methods Enzymol. 69, 94–104 (1980).
    [CrossRef]
  14. H. Y. Nakatani, J. Barber, “An improved method for isolating chloroplasts retaining their outer membranes,” Biochim. Biophys. Acta 461, 510–512 (1977).
    [CrossRef]
  15. A. F. Theisen, “Fluorescence changes in a drying maple leaf observed in the visible and near-infrared,” in Applications of Chlorophyll Fluorescence, H. K. Lichtenthaler, ed. (Kluwer, Dordrecht, The Netherlands, 1988), pp. 197–201.
  16. R. B. Knox, M. B. Singh, “Immunofluorescence applications in plant cells,” in Botanical Microscopy, A. W. Robards, ed. (Oxford U. Press, London, 1985), pp. 205–232.
  17. P. J. Harris, R. D. Hartley, “Detection of bound ferulic acid in cell walls of the Graminae by ultraviolet fluorescence microscopy,” Nature (London) 259, 508–510 (1976).
    [CrossRef]
  18. B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
    [CrossRef]
  19. P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
    [CrossRef] [PubMed]
  20. H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
    [CrossRef]
  21. L. N. M. Duysens, J. Amesz, “Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region,” Biochim. Biophys. Acta 24, 19–26 (1957).
    [CrossRef] [PubMed]
  22. E. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Laser induced blue fluorescence in vegetation,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1919–1922.
    [CrossRef]
  23. Y. Goulas, I. Moya, G. Schmuck, “Time-resolved spectroscopy of the blue fluorescence of spinach leaves,” Photosynth. Res. 25, 299–307 (1990).
    [CrossRef]

1990

Y. Goulas, I. Moya, G. Schmuck, “Time-resolved spectroscopy of the blue fluorescence of spinach leaves,” Photosynth. Res. 25, 299–307 (1990).
[CrossRef]

1989

J. Barber, S. Malkin, A. Telfer, “The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem two reaction centre,” Philos. Trans. R. Soc. London Ser. B 323, 1–13 (1989).
[CrossRef]

E. W. Chappelle, D. L. Williams, R. F. Nelson, J. E. McMurtrey, “Laser may help in remote assessment of vegetation,” Laser Focus 25(6), 123–132 (1989).

1988

P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
[CrossRef] [PubMed]

1987

L. A. Canas, A. M. Wyssmann, M. C. Benbadis, “Isolation, culture and division of olive (Olea europea L.) protoplasts,” Plant Cell Rep. 6, 369–371 (1987).
[CrossRef]

U. Schreiber, U. Schliwa, “A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants,” Photosynth. Res. 11, 173–182 (1987).
[CrossRef]

1986

M. Senorer, “The nanosecond decay of variable chlorophyll fluorescence in leaves of higher plants,” Biochim. Biophys. Acta 849, 374–380 (1986).
[CrossRef]

1985

1984

1983

M. Bradbury, N. R. Baker, “Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contribution of photochemical and nonphotochemical quenching,” Proc. R. Soc. London Ser. B 220, 251–264 (1983).
[CrossRef]

1981

B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
[CrossRef]

G. Mourioux, R. Douce, “Slow passive diffusion and orthophosphate between intact isolated chloroplasts and suspending medium,” Plant Physiol. 67, 470–473 (1981).
[CrossRef] [PubMed]

1980

D. A. Walker, “Preparation of higher plant chloroplasts,” Methods Enzymol. 69, 94–104 (1980).
[CrossRef]

1977

H. Y. Nakatani, J. Barber, “An improved method for isolating chloroplasts retaining their outer membranes,” Biochim. Biophys. Acta 461, 510–512 (1977).
[CrossRef]

1976

P. J. Harris, R. D. Hartley, “Detection of bound ferulic acid in cell walls of the Graminae by ultraviolet fluorescence microscopy,” Nature (London) 259, 508–510 (1976).
[CrossRef]

1975

W. L. Butler, M. Kitajima, “Fluorescence quenching in photosystem II of chloroplasts,” Biochim. Biophys. Acta 376, 116–125 (1975).
[CrossRef] [PubMed]

1957

L. N. M. Duysens, J. Amesz, “Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region,” Biochim. Biophys. Acta 24, 19–26 (1957).
[CrossRef] [PubMed]

Amesz, J.

L. N. M. Duysens, J. Amesz, “Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region,” Biochim. Biophys. Acta 24, 19–26 (1957).
[CrossRef] [PubMed]

Baker, N. R.

M. Bradbury, N. R. Baker, “Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contribution of photochemical and nonphotochemical quenching,” Proc. R. Soc. London Ser. B 220, 251–264 (1983).
[CrossRef]

Barber, J.

J. Barber, S. Malkin, A. Telfer, “The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem two reaction centre,” Philos. Trans. R. Soc. London Ser. B 323, 1–13 (1989).
[CrossRef]

H. Y. Nakatani, J. Barber, “An improved method for isolating chloroplasts retaining their outer membranes,” Biochim. Biophys. Acta 461, 510–512 (1977).
[CrossRef]

Benbadis, M. C.

L. A. Canas, A. M. Wyssmann, M. C. Benbadis, “Isolation, culture and division of olive (Olea europea L.) protoplasts,” Plant Cell Rep. 6, 369–371 (1987).
[CrossRef]

Bradbury, M.

M. Bradbury, N. R. Baker, “Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contribution of photochemical and nonphotochemical quenching,” Proc. R. Soc. London Ser. B 220, 251–264 (1983).
[CrossRef]

Buschmann, C.

H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
[CrossRef]

Butler, W. L.

W. L. Butler, M. Kitajima, “Fluorescence quenching in photosystem II of chloroplasts,” Biochim. Biophys. Acta 376, 116–125 (1975).
[CrossRef] [PubMed]

Canas, L. A.

L. A. Canas, A. M. Wyssmann, M. C. Benbadis, “Isolation, culture and division of olive (Olea europea L.) protoplasts,” Plant Cell Rep. 6, 369–371 (1987).
[CrossRef]

Chappelle, E. W.

Douce, R.

G. Mourioux, R. Douce, “Slow passive diffusion and orthophosphate between intact isolated chloroplasts and suspending medium,” Plant Physiol. 67, 470–473 (1981).
[CrossRef] [PubMed]

Duysens, L. N. M.

L. N. M. Duysens, J. Amesz, “Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region,” Biochim. Biophys. Acta 24, 19–26 (1957).
[CrossRef] [PubMed]

Ginsburg, S.

P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
[CrossRef] [PubMed]

Goulas, Y.

Y. Goulas, I. Moya, G. Schmuck, “Time-resolved spectroscopy of the blue fluorescence of spinach leaves,” Photosynth. Res. 25, 299–307 (1990).
[CrossRef]

Hak, R.

H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
[CrossRef]

Harris, P. J.

P. J. Harris, R. D. Hartley, “Detection of bound ferulic acid in cell walls of the Graminae by ultraviolet fluorescence microscopy,” Nature (London) 259, 508–510 (1976).
[CrossRef]

Hartley, R. D.

P. J. Harris, R. D. Hartley, “Detection of bound ferulic acid in cell walls of the Graminae by ultraviolet fluorescence microscopy,” Nature (London) 259, 508–510 (1976).
[CrossRef]

Kim, M. S.

E. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Laser induced blue fluorescence in vegetation,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1919–1922.
[CrossRef]

Kitajima, M.

W. L. Butler, M. Kitajima, “Fluorescence quenching in photosystem II of chloroplasts,” Biochim. Biophys. Acta 376, 116–125 (1975).
[CrossRef] [PubMed]

Knox, R. B.

R. B. Knox, M. B. Singh, “Immunofluorescence applications in plant cells,” in Botanical Microscopy, A. W. Robards, ed. (Oxford U. Press, London, 1985), pp. 205–232.

Kobres, R. E.

B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
[CrossRef]

Lichtenthaler, H. K.

H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
[CrossRef]

H. K. Lichtenthaler, “In vivo chlorophyll fluorescence as a tool for stress detection in plants,” in Applications of Chlorophyll Fluorescence, H. K. Lichtenthaler, ed. (Kluwer, Dordrecht, The Netherlands, 1988), pp. 129–142.

Malkin, S.

J. Barber, S. Malkin, A. Telfer, “The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem two reaction centre,” Philos. Trans. R. Soc. London Ser. B 323, 1–13 (1989).
[CrossRef]

Matile, P.

P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
[CrossRef] [PubMed]

McMurtrey, J. E.

Mourioux, G.

G. Mourioux, R. Douce, “Slow passive diffusion and orthophosphate between intact isolated chloroplasts and suspending medium,” Plant Physiol. 67, 470–473 (1981).
[CrossRef] [PubMed]

Moya, I.

Y. Goulas, I. Moya, G. Schmuck, “Time-resolved spectroscopy of the blue fluorescence of spinach leaves,” Photosynth. Res. 25, 299–307 (1990).
[CrossRef]

Nakatani, H. Y.

H. Y. Nakatani, J. Barber, “An improved method for isolating chloroplasts retaining their outer membranes,” Biochim. Biophys. Acta 461, 510–512 (1977).
[CrossRef]

Nelson, R. F.

E. W. Chappelle, D. L. Williams, R. F. Nelson, J. E. McMurtrey, “Laser may help in remote assessment of vegetation,” Laser Focus 25(6), 123–132 (1989).

Newcomb, W. W.

O’Kane, D. J.

B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
[CrossRef]

Palevitz, B. A.

B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
[CrossRef]

Raikhec, N. V.

B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
[CrossRef]

Rinderle, U.

H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
[CrossRef]

Schliwa, U.

U. Schreiber, U. Schliwa, “A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants,” Photosynth. Res. 11, 173–182 (1987).
[CrossRef]

Schmuck, G.

Y. Goulas, I. Moya, G. Schmuck, “Time-resolved spectroscopy of the blue fluorescence of spinach leaves,” Photosynth. Res. 25, 299–307 (1990).
[CrossRef]

Schreiber, U.

U. Schreiber, U. Schliwa, “A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants,” Photosynth. Res. 11, 173–182 (1987).
[CrossRef]

Senorer, M.

M. Senorer, “The nanosecond decay of variable chlorophyll fluorescence in leaves of higher plants,” Biochim. Biophys. Acta 849, 374–380 (1986).
[CrossRef]

Shellenberg, M.

P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
[CrossRef] [PubMed]

Singh, M. B.

R. B. Knox, M. B. Singh, “Immunofluorescence applications in plant cells,” in Botanical Microscopy, A. W. Robards, ed. (Oxford U. Press, London, 1985), pp. 205–232.

Stober, F.

H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
[CrossRef]

Telfer, A.

J. Barber, S. Malkin, A. Telfer, “The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem two reaction centre,” Philos. Trans. R. Soc. London Ser. B 323, 1–13 (1989).
[CrossRef]

Theisen, A. F.

A. F. Theisen, “Fluorescence changes in a drying maple leaf observed in the visible and near-infrared,” in Applications of Chlorophyll Fluorescence, H. K. Lichtenthaler, ed. (Kluwer, Dordrecht, The Netherlands, 1988), pp. 197–201.

Thomas, H.

P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
[CrossRef] [PubMed]

Walker, D. A.

D. A. Walker, “Preparation of higher plant chloroplasts,” Methods Enzymol. 69, 94–104 (1980).
[CrossRef]

Williams, D. L.

E. W. Chappelle, D. L. Williams, R. F. Nelson, J. E. McMurtrey, “Laser may help in remote assessment of vegetation,” Laser Focus 25(6), 123–132 (1989).

Wood, F. M.

Wyssmann, A. M.

L. A. Canas, A. M. Wyssmann, M. C. Benbadis, “Isolation, culture and division of olive (Olea europea L.) protoplasts,” Plant Cell Rep. 6, 369–371 (1987).
[CrossRef]

Appl. Opt.

Biochim. Biophys. Acta

M. Senorer, “The nanosecond decay of variable chlorophyll fluorescence in leaves of higher plants,” Biochim. Biophys. Acta 849, 374–380 (1986).
[CrossRef]

H. Y. Nakatani, J. Barber, “An improved method for isolating chloroplasts retaining their outer membranes,” Biochim. Biophys. Acta 461, 510–512 (1977).
[CrossRef]

L. N. M. Duysens, J. Amesz, “Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region,” Biochim. Biophys. Acta 24, 19–26 (1957).
[CrossRef] [PubMed]

W. L. Butler, M. Kitajima, “Fluorescence quenching in photosystem II of chloroplasts,” Biochim. Biophys. Acta 376, 116–125 (1975).
[CrossRef] [PubMed]

Laser Focus

E. W. Chappelle, D. L. Williams, R. F. Nelson, J. E. McMurtrey, “Laser may help in remote assessment of vegetation,” Laser Focus 25(6), 123–132 (1989).

Methods Enzymol.

D. A. Walker, “Preparation of higher plant chloroplasts,” Methods Enzymol. 69, 94–104 (1980).
[CrossRef]

Nature (London)

P. J. Harris, R. D. Hartley, “Detection of bound ferulic acid in cell walls of the Graminae by ultraviolet fluorescence microscopy,” Nature (London) 259, 508–510 (1976).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B

J. Barber, S. Malkin, A. Telfer, “The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem two reaction centre,” Philos. Trans. R. Soc. London Ser. B 323, 1–13 (1989).
[CrossRef]

Photosynth. Res.

Y. Goulas, I. Moya, G. Schmuck, “Time-resolved spectroscopy of the blue fluorescence of spinach leaves,” Photosynth. Res. 25, 299–307 (1990).
[CrossRef]

U. Schreiber, U. Schliwa, “A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants,” Photosynth. Res. 11, 173–182 (1987).
[CrossRef]

Plant Cell Rep.

L. A. Canas, A. M. Wyssmann, M. C. Benbadis, “Isolation, culture and division of olive (Olea europea L.) protoplasts,” Plant Cell Rep. 6, 369–371 (1987).
[CrossRef]

Plant Physiol.

G. Mourioux, R. Douce, “Slow passive diffusion and orthophosphate between intact isolated chloroplasts and suspending medium,” Plant Physiol. 67, 470–473 (1981).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

P. Matile, S. Ginsburg, M. Shellenberg, H. Thomas, “Cathabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells,” Proc. Natl. Acad. Sci. USA 85, 9529–9532 (1988).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B

M. Bradbury, N. R. Baker, “Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contribution of photochemical and nonphotochemical quenching,” Proc. R. Soc. London Ser. B 220, 251–264 (1983).
[CrossRef]

Protoplasma

B. A. Palevitz, D. J. O’Kane, R. E. Kobres, N. V. Raikhec, “The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology and differentiating cells as revealed by epifluorescence video and electron microscopy,” Protoplasma 109, 23–55 (1981).
[CrossRef]

Other

H. K. Lichtenthaler, F. Stober, C. Buschmann, U. Rinderle, R. Hak, “Laser-induced chlorophyll fluorescence and blue fluorescence of plants,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1913–1918.
[CrossRef]

A. F. Theisen, “Fluorescence changes in a drying maple leaf observed in the visible and near-infrared,” in Applications of Chlorophyll Fluorescence, H. K. Lichtenthaler, ed. (Kluwer, Dordrecht, The Netherlands, 1988), pp. 197–201.

R. B. Knox, M. B. Singh, “Immunofluorescence applications in plant cells,” in Botanical Microscopy, A. W. Robards, ed. (Oxford U. Press, London, 1985), pp. 205–232.

H. K. Lichtenthaler, “In vivo chlorophyll fluorescence as a tool for stress detection in plants,” in Applications of Chlorophyll Fluorescence, H. K. Lichtenthaler, ed. (Kluwer, Dordrecht, The Netherlands, 1988), pp. 129–142.

E. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Laser induced blue fluorescence in vegetation,” in Proceedings of the International Geoscience Remote Sensing Symposium (U. Maryland Press, Washington, D.C., 1990), Vol. 3, pp. 1919–1922.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; C, chopper; D, diaphragm; F, filter; L, lens; PMT, photomultiplier tube; T, target, A/D, analog-to-digital.

Fig. 2
Fig. 2

LIF spectra on intact leaves: (a) olive (Olea europea cv. Ascolana);(b) medica (Medicago arborea); (c) dehydrated olive leaf; (d) DCMU infiltrated olive leaf. Laser intensity on the leaf target is 5 × 1015 photons/(cm2 × pulse). Each spectrum is an average of five measurements; each measurement is a (fluorescence/laser power) ratio, corrected for the spectral response of our detection system and normalized to its maximum value.

Fig. 3
Fig. 3

Actinic effect measurements on olive leaves (see text). The UV pulsed laser (308 nm) has been used as a probe. Laser intensity on the leaf target is 5 × 1014 photons/(cm2 × pulse): (a), (c) actinic-induced fluorescence signal (lock-in output); (b), (d) LIF signal (boxcar output). In the blue–green spectral region the probe intensity has been decreased in order to have a LIF signal comparable with the signal at 680–740 nm. On and off indicate the switching modes of the actinic light illumination; the first step fluorescence level on traces (b) and (d) is the probe-induced fluorescence.

Fig. 4
Fig. 4

LIF spectra of (a) cell, (b) protoplast, and (c) chloroplast suspensions of olive leaves. Each spectrum is an average of three measurements, each measurement is a (fluorescence/laser power) ratio, corrected for the fluorescence spectrum of the suspension medium and the spectral response of our detection system and finally normalized to its maximum value.

Fig. 5
Fig. 5

Actinic effect on the LIF of spinach chloroplasts: wavelengths, 340-nm excitation, 460-nm detection; suspension medium according to Ref. 13; 0.015-mg/mL chlorophyll concentration.

Fig. 6
Fig. 6

LIF spectra of the same spinach chloroplast suspension as in Fig. 5 in dark and light conditions.

Metrics