Abstract

Mode-hop suppression in a tunable laser employing a Littrow grating can be obtained through a simultaneous sweep of the Littrow grating angle and cavity length. The simplest way to obtain such coupled movements is to rotate the Littrow grating about a particular axis: We show theoretically and experimentally that it is necessary to improve the formalism used in previous calculations to treat the problem correctly. The current model explains the different choices made in previous studies and gives the optimal rotation point and mechanical tolerances to obtain a maximal continuous tuning range. It has been successfully tested experimentally.

© 1993 Optical Society of America

Full Article  |  PDF Article

Errata

M. de Labachelerie, H. Sasada, and G. Passedat, "Mode-hop suppression of Littrow grating-tuned lasers: erratum," Appl. Opt. 33, 3817-3819 (1994)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-33-18-3817

References

  • View by:
  • |
  • |
  • |

  1. M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
    [CrossRef]
  2. H. Tabuchi, H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26, 742–743 (1986).
    [CrossRef]
  3. F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
    [CrossRef]
  4. O. Nilsson, E. Gobar, K. Vilhelmson, “Continuously tunable external-cavity laser,” presented at E.C.O.C. 90, the European Conference on Optical Communication, September 1990, Amsterdam, The Netherlands.
  5. M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
    [CrossRef]

1991

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

1986

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

H. Tabuchi, H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26, 742–743 (1986).
[CrossRef]

F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
[CrossRef]

Bagley, M.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Cerez, P.

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

Copper, D. M.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

deLabachelerie, M.

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

Devlin, W. J.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Diomande, K.

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

Elton, D. J.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Favre, F.

F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
[CrossRef]

Gobar, E.

O. Nilsson, E. Gobar, K. Vilhelmson, “Continuously tunable external-cavity laser,” presented at E.C.O.C. 90, the European Conference on Optical Communication, September 1990, Amsterdam, The Netherlands.

Ishikawa, H.

H. Tabuchi, H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26, 742–743 (1986).
[CrossRef]

Kemmsu, P.

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

Landousies, B.

F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
[CrossRef]

Latrasse, C.

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

le Guen, D.

F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
[CrossRef]

Nilsson, O.

O. Nilsson, E. Gobar, K. Vilhelmson, “Continuously tunable external-cavity laser,” presented at E.C.O.C. 90, the European Conference on Optical Communication, September 1990, Amsterdam, The Netherlands.

Seltzer, C. P.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Simon, J. C.

F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
[CrossRef]

Spurdens, P. C.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Tabuchi, H.

H. Tabuchi, H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26, 742–743 (1986).
[CrossRef]

Vilhelmson, K.

O. Nilsson, E. Gobar, K. Vilhelmson, “Continuously tunable external-cavity laser,” presented at E.C.O.C. 90, the European Conference on Optical Communication, September 1990, Amsterdam, The Netherlands.

Wickes, H. J.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Wyatt, R.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

Electron. Lett.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Copper, W. J. Devlin, “242 nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended-cavity,” Electron. Lett. 26, 267–269 (1986).
[CrossRef]

H. Tabuchi, H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26, 742–743 (1986).
[CrossRef]

F. Favre, D. le Guen, J. C. Simon, B. Landousies, “External-Cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 22, 795–796 (1986).
[CrossRef]

IEEE Trans. Instrum. and Meas.

M. deLabachelerie, C. Latrasse, K. Diomande, P. Kemmsu, P. Cerez, “A 1.5 μm absolutely stabilized extended-cavity semiconductor laser,” IEEE Trans. Instrum. and Meas. 40, 185–190 (1991).
[CrossRef]

Other

O. Nilsson, E. Gobar, K. Vilhelmson, “Continuously tunable external-cavity laser,” presented at E.C.O.C. 90, the European Conference on Optical Communication, September 1990, Amsterdam, The Netherlands.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principal of continuous tuning by using a particular grating rotation. The grating spectral-selection curve is shifted for q variations and the resonance frequencies are shifted with L variations. For a good choice of the grating-rotation axis, the resonances and the mode-selection function are shifted at the same speed and the dominant mode remains dominant during tuning.

Fig. 2
Fig. 2

Particular rotation axes: R1, suggested in Ref. 1; R2, suggested in Ref. 2; R3, found with a simple analysis; R4, found with an accurate model.

Fig. 3
Fig. 3

Laser model: The grating is rotated about the point R.

Fig. 4
Fig. 4

Continuous tuning range as a function of the zR coordinate.

Fig. 5
Fig. 5

Positions of the rotation points for a continuous tuning range of a, 20 nm; b, 10 nm; and c, 5 nm.

Fig. 6
Fig. 6

Optical parameters required for a round-trip phase change calculation.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

λ r = 2 a sin θ .
L = q ( λ q / 2 ) ,
λ q ( L 0 ) = λ r ( θ 0 ) .
F ( θ ) = λ q ( θ ) - λ r ( θ ) ,
F ( θ ) < ( Δ λ / 2 ) .
L ( θ ) = - y R [ sin ( θ 0 ) cos ( θ ) - tan ( θ ) ] - z R ( cos ( θ 0 ) cos ( θ ) - 1 ) + L 0 cos ( θ 0 ) cos ( θ ) ,
Δ ϕ = 4 π λ L - 2 π t 0 a + ϕ A ,
Δ ϕ = 2 q π .
F ( θ ) = 2 L ( θ ) q + t 0 ( θ ) / a - 2 a sin θ .
F ( θ ) = 2 a [ L ( θ ) sin θ 0 L 0 + t 0 ( θ ) sin θ 0 - sin θ ]
F ( θ 0 ) = 2 a [ L ( θ 0 ) sin θ 0 L 0 - L 0 t 0 ( θ 0 ) sin 2 θ 0 L 0 2 - cos θ 0 ] .
t 0 ( θ ) = [ L ( θ 0 ) - z R cos θ 0 ] ( θ - θ 0 ) ,
t 0 ( θ 0 ) = [ L ( θ 0 ) - z R cos θ 0 ] .
y R = L 0 tan θ 0 .
F ( θ ) = a sin θ 0 ( z R L 0 + 1 ) ( θ - θ 0 ) 2 ,
R D = - + A p ( y ) exp ( i ϕ p ) ,
ϕ ( M p ) = 4 π z p λ             with z p = L - y p tan θ .
R D = exp ( i 4 π L / λ ) - + A ( y ) × comb Δ y ( y - y 0 ) exp ( i φ y ) d y ,
R D = exp ( i 4 π L / λ ) { F [ A ( y ) comb Δ y ( y - y 0 ) ] } ( φ / 2 π ) ,
F [ A ( x ) ] ( Ω ) = - + A ( x ) exp ( - 2 i π Ω x ) d x .
R D = exp ( i 4 π L / λ ) × { F [ A ] * comb 1 / Δ y ( Ω ) exp ( 2 i π y 0 Ω ) } ( φ / 2 π ) .
R D = exp ( 4 i π L / λ ) exp ( - 2 i π y 0 / Δ y ) F [ A ] × ( 1 / Δ y - φ / 2 π ) .
Φ = 4 π L λ - 2 π t 0 a + ϕ A ,

Metrics