Abstract

The efficiency of power transfer and the alignability of an integrated planar-optics holographic optical backplane for board-to-board interconnections are analyzed. Both the efficiency and the alignability are functions of lateral and angular offsets in the input, the error in the spatial frequency of the hologram, errors in the source wavelength, the distance between two boards, the thickness of the substrate, the sizes of the hologram and the beam spot, and the angle of propagation of the beam. From the analyses, design guidelines on integrated planar-optic interconnects are developed, and it is shown that the interconnect design can be optimized for maximum alignability. A design with optimum alignability may not have the highest possible peak efficiency, but it can tolerate greater offsets without a substantial efficiency decrease.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. D. Z. Tsang, “One-gigabit per second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990).
    [CrossRef] [PubMed]
  3. A. K. Ghosh, “Alignability of optical interconnects,” Appl. Opt. 29, 5253–5261 (1990).
    [CrossRef] [PubMed]
  4. A. K. Ghosh, R. S. Beech, “Analysis of alignment in optical interconnection systems,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, S. J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 630–642 (1991).
    [CrossRef]
  5. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  6. J. Jahns, B. A. Brumback, “Integrated-optical split-and-shift module based on planar optics,” Opt. Commun. 76, 318–323 (1990).
    [CrossRef]
  7. R. C. Kim, E. Chen, F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1991).
    [CrossRef]
  8. H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
    [CrossRef]
  9. J. W. Parker, “Optical interconnection for advanced processor systems: a review of the ESPRIT II OLIVES program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
    [CrossRef]
  10. C. Miller, S. Mettler, I. White, Optical Fiber Splices and Connectors (Dekker, New York, 1986).
  11. M. M. Downs, J. Jahns, “Integrated-optical array generator,” Opt. Lett. 15, 769–770 (1990).
    [CrossRef] [PubMed]
  12. J. J. Jahns, S. J. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1990).
    [CrossRef]
  13. K. Rastani, W. M. Hubbard, “Alignment and fabrication tolerances of planar gratings for board-to-board optical interconnects,” Appl. Opt. 31, 4863–4870 (1992).
    [CrossRef] [PubMed]

1992 (1)

1991 (3)

R. C. Kim, E. Chen, F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1991).
[CrossRef]

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

J. W. Parker, “Optical interconnection for advanced processor systems: a review of the ESPRIT II OLIVES program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
[CrossRef]

1990 (5)

1989 (1)

1984 (1)

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Beech, R. S.

A. K. Ghosh, R. S. Beech, “Analysis of alignment in optical interconnection systems,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, S. J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 630–642 (1991).
[CrossRef]

Brumback, B. A.

J. Jahns, B. A. Brumback, “Integrated-optical split-and-shift module based on planar optics,” Opt. Commun. 76, 318–323 (1990).
[CrossRef]

Chen, E.

R. C. Kim, E. Chen, F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1991).
[CrossRef]

Downs, M. M.

Ghosh, A. K.

A. K. Ghosh, “Alignability of optical interconnects,” Appl. Opt. 29, 5253–5261 (1990).
[CrossRef] [PubMed]

A. K. Ghosh, R. S. Beech, “Analysis of alignment in optical interconnection systems,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, S. J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 630–642 (1991).
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Haumann, H. J.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Huang, A.

Hubbard, W. M.

Jahns, J.

Jahns, J. J.

J. J. Jahns, S. J. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1990).
[CrossRef]

Kim, R. C.

R. C. Kim, E. Chen, F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1991).
[CrossRef]

Kobolla, H.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Kung, S.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lin, F.

R. C. Kim, E. Chen, F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1991).
[CrossRef]

Mettler, S.

C. Miller, S. Mettler, I. White, Optical Fiber Splices and Connectors (Dekker, New York, 1986).

Miller, C.

C. Miller, S. Mettler, I. White, Optical Fiber Splices and Connectors (Dekker, New York, 1986).

Parker, J. W.

J. W. Parker, “Optical interconnection for advanced processor systems: a review of the ESPRIT II OLIVES program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
[CrossRef]

Rastani, K.

Sauer, F.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Schmidt, J.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Schwider, J.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Stork, W.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Streibl, N.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Tsang, D. Z.

Volkel, R.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Walker, S. J.

J. J. Jahns, S. J. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1990).
[CrossRef]

White, I.

C. Miller, S. Mettler, I. White, Optical Fiber Splices and Connectors (Dekker, New York, 1986).

Appl. Opt. (4)

IEEE J. Lightwave Technol. (2)

R. C. Kim, E. Chen, F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1991).
[CrossRef]

J. W. Parker, “Optical interconnection for advanced processor systems: a review of the ESPRIT II OLIVES program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991).
[CrossRef]

Opt. Commun. (2)

J. Jahns, B. A. Brumback, “Integrated-optical split-and-shift module based on planar optics,” Opt. Commun. 76, 318–323 (1990).
[CrossRef]

J. J. Jahns, S. J. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1990).
[CrossRef]

Opt. Eng. (1)

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other (2)

C. Miller, S. Mettler, I. White, Optical Fiber Splices and Connectors (Dekker, New York, 1986).

A. K. Ghosh, R. S. Beech, “Analysis of alignment in optical interconnection systems,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, S. J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 630–642 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Side view, (b) top view, and (c) end view of an IPOS.

Fig. 2
Fig. 2

Schematic of the IPOS backplane concept for board-to-board interconnects.

Fig. 3
Fig. 3

Expanded view of a section of the substrate showing the path of light between two successive reflections.

Fig. 4
Fig. 4

Illustration of the change in spot size that results from a beam striking a surface at an angle ω.

Fig. 5
Fig. 5

Plots of efficiency versus angular offset for various values of xT (fixed N). Data for curves (A)–(C) are given in Table 1, row 1

Fig. 6
Fig. 6

Plots of efficiency versus transverse offset. Data for curves (A)–(D) are given in Table 1, rows 2 and 3 (spot size is 0.75 mm).

Fig. 7
Fig. 7

Plots of efficiency versus angular offset for various values of device size d. Data for curves (A)–(C) are given in Table 1, row 4.

Fig. 8
Fig. 8

Plots of efficiency versus angular offset with xT fixed. Data for curves (A)–(C) are given in Table 1, row 5.

Fig. 9
Fig. 9

Alignability versus N; xT and substrate thickness are fixed. Data for curves (A)–(C) are given in Table 2, row 1.

Fig. 10
Fig. 10

Alignability versus substrate thickness; board-to-board separation and N are fixed. Data for curves (A)–(C) are given in Table 2, row 2 (spot size is 0.75 mm).

Fig. 11
Fig. 11

Alignability versus θ0; xT and substrate thickness are fixed. Data for curves (A)–(C) are given in Table 2, row 3.

Tables (2)

Tables Icon

Table 1 Data for Plots of Integrated Planar-Optics Efficiencya

Tables Icon

Table 2 Data for Integrated Planar-Optics Alignability Plotsa

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

f X ( x ) = 1 σ · 2 π exp ( x 2 2 σ 2 ) ,
A ( s , d , OCM ) = 0 1 P ( η ) d η .
x i = 2 t i [ tan ( θ ) ] ,
Δ x i = 2 t i [ tan ( θ ) tan ( θ 0 ) ] .
Δ y i = 2 t i [ tan ( γ ) / cos ( θ ) ] .
z i = 2 t i cos ( θ ) cos ( γ ) .
z i = 2 t i cos ( θ 0 ) .
2 a = 2 s cos ( ω ) ,
ω = cos 1 [ cos ( θ ) cos ( γ ) ] .
ξ = tan 1 [ tan ( γ ) sin ( θ ) ] .
I ( x , y ) = 2 P 0 π s 0 2 exp [ 2 ( x 2 + y 2 ) s 0 2 ] ,
I ( x , y ) = 2 P 0 cos ( θ ) π s i 2 × exp { 2 [ ( x Δ h ) 2 cos 2 ( θ ) + ( y Δ y ) 2 ] s i 2 } ,
s i = s 0 + tan ( β ) 2 t i cos ( θ 0 ) ,
h = Δ k sin ( ξ ) + Δ h cos ( ξ ) ,
k = Δ k cos ( ξ ) Δ h sin ( ξ ) .
I ( x , y ) = 2 P 0 cos ( ω ) π s i 2 × exp { 2 [ ( x h ) 2 cos 2 ( ω ) + ( y k ) 2 ] s i 2 } ,
η = 2 cos ( ω ) π s i 2 d d exp [ 2 ( y k ) 2 s i 2 ] × { ( d 2 y 2 ) 1 / 2 ( d 2 y 2 ) 1 / 2 exp [ 2 ( x h ) 2 cos 2 ( ω ) s i 2 ] d x } d y .
η = cos ( θ ) 2 s i π d d exp [ 2 ( x h ) 2 cos 2 ( θ ) s i 2 ] × erf [ 2 s i ( d 2 x 2 ) 1 / 2 ] d x .
η = 2 s π d d exp [ 2 ( y Δ y ) 2 s i 2 ] × erf [ cos ( θ 0 ) 2 s i ( d 2 y 2 ) 1 / 2 ] d y .
P m ( η ) = erf [ X m ( η ) σ 2 ] , m = 1 , 2 , 3 ,
P ( η ) = erf [ Δ x ( η ) σ 2 ] erf [ Δ y ( η ) σ 2 ] erf [ γ ( η ) σ 2 ] 1 σ 2 π × Δ θ 1 ( η ) Δ θ 2 ( η ) exp ( ϕ 2 2 σ 2 ) d ϕ ,

Metrics