Abstract

Many optical filtering problems require the use of assemblies of layers with thicknesses that bear no obvious relationship to each other. Here we present the results obtained for a number of examples in which optical monitoring is performed with a change of control wavelengths for each layer of the stack. For this, it is necessary to determine for each layer the different wavelengths that provide an extremum of transmittance when the required thickness is achieved. We show that this leads, in some cases, to making the benefit of error compensation analogous to the well-known method used in the production of quarter-wave stacks. Because ion-assisted deposition and ion-plating techniques are suitable from the point of view of refractive-index reproducibility, optical monitoring can be used at a good level of performance. However, the production of high-quality optical thin films needs more than just the choice of a monitoring process. In particular, problems of uniformity are critical for high-performance coatings. Here we show how uniformity can be determined for each material involved.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).
  2. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
    [CrossRef]
  3. H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
    [CrossRef]
  4. P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
    [CrossRef]
  5. H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
    [CrossRef]
  6. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef] [PubMed]
  7. C. J. van der Laan, H. J. Frankena, “Monitoring of optical thin films using a quartz crystal monitor,” Vacuum 27, 391–397 (1977).
    [CrossRef]
  8. R. R. Willey, “Optical thickness monitoring sensitivity improvement using graphical methods,” Appl. Opt. 26, 729–737 (1987).
    [CrossRef] [PubMed]
  9. B. Vidal, A. Former, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
    [PubMed]
  10. C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).
  11. F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.
  12. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988), pp. 343–352.
  13. C. Grèzes-Besset, “Conception et réalisation de filtres optiques adaptés au démultiplexage pour les télécommunications par satellites. Influence de la diffusion sur la limitation des performances,” Ph.D. dissertation (Université d'Aix-Marseille III, Aix-en-Provence, France, 1987).
  14. A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).
  15. B. Ramprasad, T. Radha, M. Rao, “On uniformity of film thickness on rotating substrates,” J. Vac. Sci. Technol. 9, 1227–1231 (1972).
    [CrossRef]
  16. A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 27–32 (1986).
  17. C. Grèzes-Besset, R. Richier, E. Pelletier, “Layer uniformity obtained by vacuum evaporation: application to Fabry–Perot filters,” Appl. Opt. 28, 2960–2964 (1989).
    [CrossRef] [PubMed]
  18. Technical notice of INOPTIC Thin Film Monitoring System. Available on inquiry.

1989 (1)

1988 (1)

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

1987 (1)

1981 (2)

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

1979 (1)

1977 (2)

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

C. J. van der Laan, H. J. Frankena, “Monitoring of optical thin films using a quartz crystal monitor,” Vacuum 27, 391–397 (1977).
[CrossRef]

1976 (1)

H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
[CrossRef]

1972 (3)

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

B. Ramprasad, T. Radha, M. Rao, “On uniformity of film thickness on rotating substrates,” J. Vac. Sci. Technol. 9, 1227–1231 (1972).
[CrossRef]

Albrand, G.

F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.

C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).

Amra, C.

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).

F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.

Bousquet, P.

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Commandré, M.

F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.

Cousin, B.

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

Drobot, A. D.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Egorov, V. N.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988), pp. 343–352.

Flory, F.

C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).

F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.

Former, A.

B. Vidal, A. Former, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
[PubMed]

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Fornier, A.

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 27–32 (1986).

Frankena, H. J.

C. J. van der Laan, H. J. Frankena, “Monitoring of optical thin films using a quartz crystal monitor,” Vacuum 27, 391–397 (1977).
[CrossRef]

Grèzes-Besset, C.

C. Grèzes-Besset, R. Richier, E. Pelletier, “Layer uniformity obtained by vacuum evaporation: application to Fabry–Perot filters,” Appl. Opt. 28, 2960–2964 (1989).
[CrossRef] [PubMed]

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

C. Grèzes-Besset, “Conception et réalisation de filtres optiques adaptés au démultiplexage pour les télécommunications par satellites. Influence de la diffusion sur la limitation des performances,” Ph.D. dissertation (Université d'Aix-Marseille III, Aix-en-Provence, France, 1987).

C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).

Klokov, Yu. K.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Kowalczyk, R.

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Macleod, H. A.

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
[CrossRef]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Malikov, S. N.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Otrio, G.

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

Panteleev, G. V.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Patskevich, N. N.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Pelletier, E.

C. Grèzes-Besset, R. Richier, E. Pelletier, “Layer uniformity obtained by vacuum evaporation: application to Fabry–Perot filters,” Appl. Opt. 28, 2960–2964 (1989).
[CrossRef] [PubMed]

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

B. Vidal, A. Former, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
[PubMed]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.

C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 27–32 (1986).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988), pp. 343–352.

Radha, T.

B. Ramprasad, T. Radha, M. Rao, “On uniformity of film thickness on rotating substrates,” J. Vac. Sci. Technol. 9, 1227–1231 (1972).
[CrossRef]

Ramprasad, B.

B. Ramprasad, T. Radha, M. Rao, “On uniformity of film thickness on rotating substrates,” J. Vac. Sci. Technol. 9, 1227–1231 (1972).
[CrossRef]

Rao, M.

B. Ramprasad, T. Radha, M. Rao, “On uniformity of film thickness on rotating substrates,” J. Vac. Sci. Technol. 9, 1227–1231 (1972).
[CrossRef]

Richier, R.

C. Grèzes-Besset, R. Richier, E. Pelletier, “Layer uniformity obtained by vacuum evaporation: application to Fabry–Perot filters,” Appl. Opt. 28, 2960–2964 (1989).
[CrossRef] [PubMed]

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 27–32 (1986).

Roche, P.

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988), pp. 343–352.

van der Laan, C. J.

C. J. van der Laan, H. J. Frankena, “Monitoring of optical thin films using a quartz crystal monitor,” Vacuum 27, 391–397 (1977).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988), pp. 343–352.

Vidal, B.

Willey, R. R.

Yampol'skil, V. I.

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Ann. Télécommun. (1)

C. Grèzes-Besset, C. Amra, B. Cousin, G. Otrio, E. Pelletier, R. Richier, “Etude de la diaphonie d'un système de démultiplexage par filtres interférentiels. Conséquences de la diffusion de la lumière par les irrégularités des surfaces optiques,” Ann. Télécommun. 43, 135–141 (1988).

Appl. Opt. (4)

J. Vac. Sci. Technol. (1)

B. Ramprasad, T. Radha, M. Rao, “On uniformity of film thickness on rotating substrates,” J. Vac. Sci. Technol. 9, 1227–1231 (1972).
[CrossRef]

Opt. Acta (2)

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Sov. J. Opt. Technol. (1)

A. D. Drobot, V. N. Egorov, Yu. K. Klokov, S. N. Malikov, G. V. Panteleev, N. N. Patskevich, V. I. Yampol'skil, “Optimization of optical coating deposition conditions,” Sov. J. Opt. Technol. 48, 496–499 (1981).

Thin Solid Films (2)

H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
[CrossRef]

P. Bousquet, A. Former, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the autocorrelation of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Vacuum (1)

C. J. van der Laan, H. J. Frankena, “Monitoring of optical thin films using a quartz crystal monitor,” Vacuum 27, 391–397 (1977).
[CrossRef]

Other (6)

Technical notice of INOPTIC Thin Film Monitoring System. Available on inquiry.

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 27–32 (1986).

C. Grèzes-Besset, G. Albrand, C. Amra, F. Flory, E. Pelletier, “Opportunity of ion assisted deposition in production of high performance optical coatings for demultiplexing in spatial telecommunications,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 63–70 (1989).

F. Flory, C. Amra, M. Commandré, E. Pelletier, G. Albrand, “Comparative study of some techniques used to manufacture optical coatings,” in Optical Coatings, Jinfa Tang, Yixum Yan, ed. (International Academic, Shang-hai, 1989), pp. 137–140.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988), pp. 343–352.

C. Grèzes-Besset, “Conception et réalisation de filtres optiques adaptés au démultiplexage pour les télécommunications par satellites. Influence de la diffusion sur la limitation des performances,” Ph.D. dissertation (Université d'Aix-Marseille III, Aix-en-Provence, France, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Index variations of titanium dioxide (TiO2) deposited by IAD measured over a spectral range 0.4–1.0 μm for several runs of production.

Fig. 2
Fig. 2

Index variations of tantalum pentoxide (Ta2O5) deposited by ion plating measured over a spectral range 0.4–1.0 μm for several runs of production.

Fig. 3
Fig. 3

Spectral profile of a triple-half-wave Fabry–Perot filter realized by ion plating under vacuum and in air.

Fig. 4
Fig. 4

Numerical simulation for an antireflection coating at 85° incidence for p polarization; a random error ∊ = 10−3 on the detection of the zero of the transmittance derivative is assumed, compared with the case of independent random thickness errors Δth/th = 2%.

Fig. 5
Fig. 5

Spectral profile of the same antireflection coating as in Fig. 4 for normal incidence.

Fig. 6
Fig. 6

Measurement at normal incidence of the spectral profile of antireflection coating realized by multiwavelength monitoring.

Fig. 7
Fig. 7

Multiwavelength monitoring on a 15-layer mirror compared with single-wavelength monitoring and independent random thickness errors Δth/th = 2%.

Fig. 8
Fig. 8

Non-quarter-wave layer stack for visual application. Numerical simulation results, assuming random error on multiwavelength optical monitoring and independent random thickness errors.

Fig. 9
Fig. 9

Experimental results on a visible infrared dichroic: broadband visible reflectance and good infrared transmittance (Ta2O5 and SiO2 deposited by ion plating) are shown.

Fig. 10
Fig. 10

Multicavity Fabry–Perot filters for optical telecommunications required in the near-infrared region (TiO2 and SiO2 deposited by the IAD process). Good agreement was obtained between measurement and calculation.

Fig. 11
Fig. 11

Experimental results on spectral separator 1.3 μm/1.5 μm (TiO2 and SiO2 deposited by the IAD process). The effect of uniformity of materials on peripheral samples is shown.

Fig. 12
Fig. 12

Experimental results on spectral separator 1.5 μm/1.3 μm (TiO2 and SiO2 deposited by the IAD process). The effect of uniformity of materials on peripheral samples is shown.

Fig. 13
Fig. 13

Improvement of uniformity by adjusting the relative height of the monitoring sample.

Fig. 14
Fig. 14

Experimental results of a single Fabry–Perot filter (Ta2O5, SiO2) with a high-index cavity realized by the ion-plating technique compared with calculation. The monitoring sample is centered on wavelength λ0 = 768.2 nm. The peripheral samples are centered on λ 0 = 762.5 nm.

Fig. 15
Fig. 15

Experimental results of a single Fabry–Perot filter (Ta2O5, SiO2) with a low-index cavity realized by the ion-plating technique compared with calculation. The monitoring sample is centered on wavelength λ0 = 916.2 nm. The peripheral samples are centered on λ 0 = 910.0 nm.

Fig. 16
Fig. 16

Experimental results of a triple-half-wave Fabry–Perot filter (Ta2O5, SiO2) realized by the ion-plating technique compared with calculation, which used values of uniformity for each material determined with the help of the experimental results of Figs. 14 and 15. The monitoring sample is centered on wavelength λ0 = 668.0 nm. The peripheral samples are centered on λ 0 = 666.0 nm.

Fig. 17
Fig. 17

Experimental results of a triple-half-wave Fabry–Perot filter (Ta2O5, SiO2) realized by the ion-plating techique compared with calculation, which used uH = 1.0023 and uL = 0.9765. The monitoring sample is centered on wavelength λ0 = 444.0 nm. The peripheral samples are centered on λ 0 = 443.1 nm.

Fig. 18
Fig. 18

Experimental results of a triple-half-wave Fabry–Perot filter (Ta2O5, SiO2) with a 10-nm bandwidth realized by the ion-plating technique compared with calculation. The monitoring sample is centered on wavelength λ0 = 763.0 nm. Peripheral samples are centered on λ 0 = 758.0 nm. The deterioration of the profiles of peripheral samples can be explained by a 2% fluctuation of uniformity from one spacer layer to another.

Tables (2)

Tables Icon

Table 1 Thicknesses of an 11-Layer Antireflection Coating for an 85° Grazing Incidence and p Polarization over the Spectral Range 560–680 nm with TiO2 and SiO2 Deposited by the IAD Process

Tables Icon

Table 2 Determination of All Wavelengths That Lead to an Extremum of Transmittance in the Range 0.4–1 μm

Metrics