Abstract

Motivation for this work includes observations at Lawrence Livermore National Laboratory of a correlation between laser damage thresholds and both the absorption and the nodular-defect density of coatings. Activated oxygen is used to increase the metal-oxidation kinetics at the coated surface during electron-beam deposition. A series of hafnia layers are made with various conditions: two μ-wave configuations, two sources (hafnium and hafnia), and two reactive oxygen pressures. Laser damage thresholds (1064-nm, 10-ns pulses), absorption (at 511 nm), and nodular-defect densities from these coatings are reported. The damage thresholds are observed to increase as the absorption of the coatings decreases. However, no significant increase in damage thresholds are observed with the coatings made from a low nodular-defect density source material (hafnium). Hafnia coatings can be made from hafnium sources that have lower nodular-defect densities, lower absorption, and damage thresholds that are comparable with coatings made from a conventional hafnia source.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Bettis, A. H. Guenther, R. A. House, “Refractive index dependence of pulse-laser-induced damage,” Opt. Lett. 4, 256–258 (1979).
    [CrossRef] [PubMed]
  2. R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
    [CrossRef]
  3. K. H. Guenther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3816 (1984).
    [CrossRef] [PubMed]
  4. M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 375–385 (1992).
    [CrossRef]
  5. S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
    [CrossRef]
  6. T. H. Allen, “Properties of ion assisted deposited silica and titania films,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 93–100 (1982).
  7. D. C. Chronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
    [CrossRef]
  8. W. Heitmann, “Reactive evaporation in ionized gases,” Appl. Opt. 10, 2414–2418 (1971).
    [CrossRef] [PubMed]
  9. H. Kuster, J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70, 43–47 (1980).
    [CrossRef]
  10. J. Ebert, “Activated reactive evaporation,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 29–38 (1982).
  11. J. R. Engstrom, T. Engel, “Atomic versus molecular reactivity at the gas-solid interface: the adsorption and reaction of atomic oxygen on the Si(100) surface,” Phys. Rev. B 41, 1038–1041 (1990).
    [CrossRef]
  12. C. J. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 109–115 (1992).
    [CrossRef]
  13. S. J. Cohen, R. E. English, C. J. Stolz, J. R. Taylor, “Thermal analysis of transmissive elements in high average power laser beam delivery systems,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1739, 21–23 (1992).
  14. V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. Soc. Photo-Opt. Instrum. End.622, 186–190 (1986).
  15. C. Mack, Essentials of Statistics for Scientists and Technologists (Plenum, New York, 1967), Chaps. 10 and 11.
  16. M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
    [CrossRef]

1990 (2)

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

J. R. Engstrom, T. Engel, “Atomic versus molecular reactivity at the gas-solid interface: the adsorption and reaction of atomic oxygen on the Si(100) surface,” Phys. Rev. B 41, 1038–1041 (1990).
[CrossRef]

1989 (1)

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

1984 (1)

1980 (1)

H. Kuster, J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70, 43–47 (1980).
[CrossRef]

1979 (1)

1971 (1)

1959 (1)

D. C. Chronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
[CrossRef]

Allen, T. H.

T. H. Allen, “Properties of ion assisted deposited silica and titania films,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 93–100 (1982).

Balasubramamian, K.

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

Balooch, M.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 375–385 (1992).
[CrossRef]

Baumann, S. M.

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

Bettis, J. R.

Bissinger, H. D.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. Soc. Photo-Opt. Instrum. End.622, 186–190 (1986).

Blattner, R. J.

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

Braundmeier, A. J.

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

Chow, R.

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

Chronemeyer, D. C.

D. C. Chronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
[CrossRef]

Cohen, S. J.

S. J. Cohen, R. E. English, C. J. Stolz, J. R. Taylor, “Thermal analysis of transmissive elements in high average power laser beam delivery systems,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1739, 21–23 (1992).

Draggoo, V. G.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. Soc. Photo-Opt. Instrum. End.622, 186–190 (1986).

Ebert, J.

H. Kuster, J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70, 43–47 (1980).
[CrossRef]

J. Ebert, “Activated reactive evaporation,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 29–38 (1982).

Endo, A.

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

Engel, T.

J. R. Engstrom, T. Engel, “Atomic versus molecular reactivity at the gas-solid interface: the adsorption and reaction of atomic oxygen on the Si(100) surface,” Phys. Rev. B 41, 1038–1041 (1990).
[CrossRef]

English, R. E.

S. J. Cohen, R. E. English, C. J. Stolz, J. R. Taylor, “Thermal analysis of transmissive elements in high average power laser beam delivery systems,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1739, 21–23 (1992).

Engstrom, J. R.

J. R. Engstrom, T. Engel, “Atomic versus molecular reactivity at the gas-solid interface: the adsorption and reaction of atomic oxygen on the Si(100) surface,” Phys. Rev. B 41, 1038–1041 (1990).
[CrossRef]

Guenther, A. H.

Guenther, K. H.

K. H. Guenther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3816 (1984).
[CrossRef] [PubMed]

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

Heitmann, W.

House, R. A.

Hu, X. Q.

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

Itoh, M.

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

Kozlowski, M. R.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 375–385 (1992).
[CrossRef]

Kuroda, K.

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

Kuster, H.

H. Kuster, J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70, 43–47 (1980).
[CrossRef]

Loomis, G. E.

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

Mack, C.

C. Mack, Essentials of Statistics for Scientists and Technologists (Plenum, New York, 1967), Chaps. 10 and 11.

Martin, D. W.

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

Martner, C. C.

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

Morton, R. G.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. Soc. Photo-Opt. Instrum. End.622, 186–190 (1986).

Ogura, I.

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

Rainer, F.

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

Sarginson, T. G.

C. J. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 109–115 (1992).
[CrossRef]

Sawicki, R. H.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. Soc. Photo-Opt. Instrum. End.622, 186–190 (1986).

Siekhaus, W. J.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 375–385 (1992).
[CrossRef]

Staggs, M. C.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 375–385 (1992).
[CrossRef]

Stolz, C. J.

C. J. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 109–115 (1992).
[CrossRef]

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

S. J. Cohen, R. E. English, C. J. Stolz, J. R. Taylor, “Thermal analysis of transmissive elements in high average power laser beam delivery systems,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1739, 21–23 (1992).

Taylor, J. R.

S. J. Cohen, R. E. English, C. J. Stolz, J. R. Taylor, “Thermal analysis of transmissive elements in high average power laser beam delivery systems,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1739, 21–23 (1992).

C. J. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 109–115 (1992).
[CrossRef]

Watanabe, S.

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

Appl. Opt. (2)

Nucl. Instrum. Methods Phys. Res. B (1)

S. M. Baumann, C. C. Martner, D. W. Martin, R. J. Blattner, A. J. Braundmeier, “A study of electron beam evaporated SiO2, TiO2 and A12O3 films using RBS, HFS and SIMS,” Nucl. Instrum. Methods Phys. Res. B 45, 664–668 (1990).
[CrossRef]

Opt. Commun. (1)

M. Itoh, A. Endo, K. Kuroda, S. Watanabe, I. Ogura, “Laser-induced damage threshold and absorption measurements in rare-gas-halide excimer laser components,” Opt. Commun. 74, 253–260 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

D. C. Chronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
[CrossRef]

Phys. Rev. B (1)

J. R. Engstrom, T. Engel, “Atomic versus molecular reactivity at the gas-solid interface: the adsorption and reaction of atomic oxygen on the Si(100) surface,” Phys. Rev. B 41, 1038–1041 (1990).
[CrossRef]

Thin Solid Films (1)

H. Kuster, J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70, 43–47 (1980).
[CrossRef]

Other (8)

J. Ebert, “Activated reactive evaporation,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 29–38 (1982).

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 375–385 (1992).
[CrossRef]

C. J. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 109–115 (1992).
[CrossRef]

S. J. Cohen, R. E. English, C. J. Stolz, J. R. Taylor, “Thermal analysis of transmissive elements in high average power laser beam delivery systems,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1739, 21–23 (1992).

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. Soc. Photo-Opt. Instrum. End.622, 186–190 (1986).

C. Mack, Essentials of Statistics for Scientists and Technologists (Plenum, New York, 1967), Chaps. 10 and 11.

R. Chow, C. J. Stolz, F. Rainer, G. E. Loomis, K. H. Guenther, K. Balasubramamian, X. Q. Hu, “Laser-induced damage threshold comparison of reactive low voltage ion plated and e-beam coatings, in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 199–210 (1992).
[CrossRef]

T. H. Allen, “Properties of ion assisted deposited silica and titania films,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 93–100 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DT (1064-nm wavelength, 10-ns pulses) correlation to nodular-defect densities. Data were taken from hafnia/silica polarizers made over a period of years and supplied by one vendor.

Fig. 2
Fig. 2

Configuration of the μ-wave source attached to the side of the coating chamber. The O2 was bled through the leak valve, into the plasma region, and exited the orifice on the vacuum side of the chamber.

Fig. 3
Fig. 3

Average nodular-defect density of HfO2 layers made from the various sources. The weight densities are included below the source descriptors.

Fig. 4
Fig. 4

Variation of the average nodular-defect density of HfO2 layers with impingement ratio. The impingement ratio is the number of O2 molecules divided by the number of evaporant molecules. The evaporant rate was kept constant at 1.5 Å/s. The impingement ratio was increased by increasing the O2 pressure.

Fig. 5
Fig. 5

Variation of the average nodular-defect density of HfO2 layers with a deposition rate at a constant impingement ratio of 44.

Fig. 6
Fig. 6

Absorption (511 nm) of HfO2 coatings. The coatings were made from two sources (Hf and black HfO2 pellets), reactive gases (Off is molecular O2 and On is activated O2), chamber pressures (High is 1 × 10−4 Torr and Med. is 4 × 10−5 Torr), and orifice diameters.

Fig. 7
Fig. 7

HfO2 DT's (1064 nm, 10-ns pulse width). The coatings were made from two sources (Hf and black HfO2 pellets), reactive gases (Off is molecular O2 and On is activated O2), chamber pressures (High is 1 × 10−4 Torr and Med. is 4 × 10−5 Torr), and orifice diameters.

Fig. 8
Fig. 8

DT (1064 nm, 10-ns pulsewidth) versus absorption (511 nm) of the HfO2 coatings.

Tables (2)

Tables Icon

Table 1 Activated O2 Pressure at Certain μ-Wave Configurations before a Deposition Run

Tables Icon

Table 2 Comparison of the Actual and Predicted Frequencies of Finding a Nodular-Defect Density on a Coatinq made from a Given Source Materiala

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( s ) = ρ s exp ( ρ ) / s ! ,
alpha = 0.045 * T 1.11 * R 0.83 / P 1.05 ,
Z O 2 = P O 2 ( N / 2 π mkT ) 1 / 2 ,
Z HfO 2 = DNR / m ,

Metrics