Abstract

The short-circuit current density of a solar cell is used as a merit function to optimize solar cell antireflection coating designs. Jsc/Jmax ratios reach 99%, even with a 10-nm-thick passivation layer.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Baraona, H. W. Brandhorst, “V-grooved silicon solar cells,” in Proceedings of the Eleventh IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 44–48.
  2. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989), Chap. 3, pp. 71–86.
  3. G. E. Jellison, R. F. Wood, “Antireflection coatings for planar silicon solar cells,” Solar Cells 18, 93–114 (1986).
    [Crossref]
  4. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982), Chap. 4, pp. 79–81.
  5. H. J. Hovel, Solar Cells, Semiconductors and Semimetals (Academic, New York, 1975), Vol. 11, Chap. 2, p. 38.
  6. P. A. Iles, F. F. Ho, “High efficiency silicon solar cells,” Solar Cells 17, 65–73 (1986).
    [Crossref]
  7. A. Rohatgi, P. Rai-Choudhury, D. L. Meier, J. G. Milstein, “Surface-passivated high-efficiency silicon solar cells,” in Proceedings of the Seventeenth IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 409–414.
  8. J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38, 1925–1934 (1991).
    [Crossref]
  9. B. L. Sopori, R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells,” Solar Cells 8, 249–261 (1983).
    [Crossref]
  10. K. L. Chopra, S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983), App. A, pp. 512–514.
  11. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  12. H. R. Philipp, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960);G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982);E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 563–566.
    [Crossref]
  13. O. Kamataki, S. Iida, T. Saitoh, T. Uematsu, “Characterization of antireflection films for surface-passivated crystalline silicon solar cells using spectroscopic ellipsometry,” in Proceedings of the Twenty-First IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 363–367.
  14. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  15. J. M. Albella, J. M. Martinez-Duart, F. Rueda, “Index of refraction of tantalum oxide in the wavelength interval 2750–14000 Å,” Opt. Acta 22, 973–979 (1975).
    [Crossref]
  16. H. M. Liddell, “Theoretical determination of the optical constants of weakly absorbing thin films,” J. Phys. D 7, 1588–1596 (1974).
    [Crossref]
  17. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983).
    [Crossref] [PubMed]

1991 (1)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38, 1925–1934 (1991).
[Crossref]

1986 (2)

G. E. Jellison, R. F. Wood, “Antireflection coatings for planar silicon solar cells,” Solar Cells 18, 93–114 (1986).
[Crossref]

P. A. Iles, F. F. Ho, “High efficiency silicon solar cells,” Solar Cells 17, 65–73 (1986).
[Crossref]

1983 (2)

1975 (1)

J. M. Albella, J. M. Martinez-Duart, F. Rueda, “Index of refraction of tantalum oxide in the wavelength interval 2750–14000 Å,” Opt. Acta 22, 973–979 (1975).
[Crossref]

1974 (1)

H. M. Liddell, “Theoretical determination of the optical constants of weakly absorbing thin films,” J. Phys. D 7, 1588–1596 (1974).
[Crossref]

1965 (2)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
[Crossref]

1960 (1)

H. R. Philipp, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960);G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982);E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 563–566.
[Crossref]

Albella, J. M.

J. M. Albella, J. M. Martinez-Duart, F. Rueda, “Index of refraction of tantalum oxide in the wavelength interval 2750–14000 Å,” Opt. Acta 22, 973–979 (1975).
[Crossref]

Baraona, C. R.

C. R. Baraona, H. W. Brandhorst, “V-grooved silicon solar cells,” in Proceedings of the Eleventh IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 44–48.

Brandhorst, H. W.

C. R. Baraona, H. W. Brandhorst, “V-grooved silicon solar cells,” in Proceedings of the Eleventh IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 44–48.

Chopra, K. L.

K. L. Chopra, S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983), App. A, pp. 512–514.

Das, S. R.

K. L. Chopra, S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983), App. A, pp. 512–514.

Dobrowolski, J. A.

Green, M. A.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38, 1925–1934 (1991).
[Crossref]

M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982), Chap. 4, pp. 79–81.

Ho, F. C.

Ho, F. F.

P. A. Iles, F. F. Ho, “High efficiency silicon solar cells,” Solar Cells 17, 65–73 (1986).
[Crossref]

Hovel, H. J.

H. J. Hovel, Solar Cells, Semiconductors and Semimetals (Academic, New York, 1975), Vol. 11, Chap. 2, p. 38.

Iida, S.

O. Kamataki, S. Iida, T. Saitoh, T. Uematsu, “Characterization of antireflection films for surface-passivated crystalline silicon solar cells using spectroscopic ellipsometry,” in Proceedings of the Twenty-First IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 363–367.

Iles, P. A.

P. A. Iles, F. F. Ho, “High efficiency silicon solar cells,” Solar Cells 17, 65–73 (1986).
[Crossref]

Jellison, G. E.

G. E. Jellison, R. F. Wood, “Antireflection coatings for planar silicon solar cells,” Solar Cells 18, 93–114 (1986).
[Crossref]

Kamataki, O.

O. Kamataki, S. Iida, T. Saitoh, T. Uematsu, “Characterization of antireflection films for surface-passivated crystalline silicon solar cells using spectroscopic ellipsometry,” in Proceedings of the Twenty-First IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 363–367.

Liddell, H. M.

H. M. Liddell, “Theoretical determination of the optical constants of weakly absorbing thin films,” J. Phys. D 7, 1588–1596 (1974).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989), Chap. 3, pp. 71–86.

Malitson, I. H.

Martinez-Duart, J. M.

J. M. Albella, J. M. Martinez-Duart, F. Rueda, “Index of refraction of tantalum oxide in the wavelength interval 2750–14000 Å,” Opt. Acta 22, 973–979 (1975).
[Crossref]

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Meier, D. L.

A. Rohatgi, P. Rai-Choudhury, D. L. Meier, J. G. Milstein, “Surface-passivated high-efficiency silicon solar cells,” in Proceedings of the Seventeenth IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 409–414.

Milstein, J. G.

A. Rohatgi, P. Rai-Choudhury, D. L. Meier, J. G. Milstein, “Surface-passivated high-efficiency silicon solar cells,” in Proceedings of the Seventeenth IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 409–414.

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Philipp, H. R.

H. R. Philipp, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960);G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982);E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 563–566.
[Crossref]

Pryor, R. A.

B. L. Sopori, R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells,” Solar Cells 8, 249–261 (1983).
[Crossref]

Rai-Choudhury, P.

A. Rohatgi, P. Rai-Choudhury, D. L. Meier, J. G. Milstein, “Surface-passivated high-efficiency silicon solar cells,” in Proceedings of the Seventeenth IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 409–414.

Rohatgi, A.

A. Rohatgi, P. Rai-Choudhury, D. L. Meier, J. G. Milstein, “Surface-passivated high-efficiency silicon solar cells,” in Proceedings of the Seventeenth IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 409–414.

Rueda, F.

J. M. Albella, J. M. Martinez-Duart, F. Rueda, “Index of refraction of tantalum oxide in the wavelength interval 2750–14000 Å,” Opt. Acta 22, 973–979 (1975).
[Crossref]

Saitoh, T.

O. Kamataki, S. Iida, T. Saitoh, T. Uematsu, “Characterization of antireflection films for surface-passivated crystalline silicon solar cells using spectroscopic ellipsometry,” in Proceedings of the Twenty-First IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 363–367.

Sopori, B. L.

B. L. Sopori, R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells,” Solar Cells 8, 249–261 (1983).
[Crossref]

Taft, E. A.

H. R. Philipp, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960);G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982);E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 563–566.
[Crossref]

Uematsu, T.

O. Kamataki, S. Iida, T. Saitoh, T. Uematsu, “Characterization of antireflection films for surface-passivated crystalline silicon solar cells using spectroscopic ellipsometry,” in Proceedings of the Twenty-First IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 363–367.

Waldorf, A.

Wood, R. F.

G. E. Jellison, R. F. Wood, “Antireflection coatings for planar silicon solar cells,” Solar Cells 18, 93–114 (1986).
[Crossref]

Zhao, J.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38, 1925–1934 (1991).
[Crossref]

Appl. Opt. (1)

Comput. J. (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

IEEE Trans. Electron. Dev. (1)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38, 1925–1934 (1991).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

H. M. Liddell, “Theoretical determination of the optical constants of weakly absorbing thin films,” J. Phys. D 7, 1588–1596 (1974).
[Crossref]

Opt. Acta (1)

J. M. Albella, J. M. Martinez-Duart, F. Rueda, “Index of refraction of tantalum oxide in the wavelength interval 2750–14000 Å,” Opt. Acta 22, 973–979 (1975).
[Crossref]

Phys. Rev. (1)

H. R. Philipp, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960);G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982);E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 563–566.
[Crossref]

Solar Cells (3)

B. L. Sopori, R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells,” Solar Cells 8, 249–261 (1983).
[Crossref]

P. A. Iles, F. F. Ho, “High efficiency silicon solar cells,” Solar Cells 17, 65–73 (1986).
[Crossref]

G. E. Jellison, R. F. Wood, “Antireflection coatings for planar silicon solar cells,” Solar Cells 18, 93–114 (1986).
[Crossref]

Other (7)

M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982), Chap. 4, pp. 79–81.

H. J. Hovel, Solar Cells, Semiconductors and Semimetals (Academic, New York, 1975), Vol. 11, Chap. 2, p. 38.

C. R. Baraona, H. W. Brandhorst, “V-grooved silicon solar cells,” in Proceedings of the Eleventh IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 44–48.

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989), Chap. 3, pp. 71–86.

A. Rohatgi, P. Rai-Choudhury, D. L. Meier, J. G. Milstein, “Surface-passivated high-efficiency silicon solar cells,” in Proceedings of the Seventeenth IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 409–414.

K. L. Chopra, S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983), App. A, pp. 512–514.

O. Kamataki, S. Iida, T. Saitoh, T. Uematsu, “Characterization of antireflection films for surface-passivated crystalline silicon solar cells using spectroscopic ellipsometry,” in Proceedings of the Twenty-First IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 363–367.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of double reflection.

Fig. 2
Fig. 2

Measured and calculated reflectances of a polished Si substrate, showing good agreement.

Fig. 3
Fig. 3

Measured and calculated reflectances calculated with complex and constant indices for TiO2 on a flat Si surface. Good agreement between calculated and measured values below 500 nm is achieved with the calculation that employs complex indices.

Fig. 4
Fig. 4

Reflectance of five optimized AR designs and the weighting function. In the visible spectral region, lower reflectance is achieved with a higher weighting value. The calculation assumes double reflection of the textured surface.

Fig. 5
Fig. 5

Calculated short-circuit current density versus SiO2 passivation thickness for optimized and nonoptimized SiO2–TiO2 AR designs. The optimized system exhibits an electrical performance that is less sensitive to thickness errors of the passivation layer than the nonoptimized system.

Fig. 6
Fig. 6

Calculated reflectance of fixed SiO2–TiO2 designs showing the degradation of the AR designs with increasing passivation layer thicknesses.

Fig. 7
Fig. 7

Calculated reflectances of reoptimized SiO2–TiO2 designs showing how the optimization compensates for the higher reflectivity resulting from the thicker passivation thicknesses.

Fig. 8
Fig. 8

Calculated short-circuit current density versus SiO2 passivation thickness for five optimized AR designs. When the passivation layer thickness is increased from 0 to 20 nm, the Jsc/Jmax performance remains high.

Tables (2)

Tables Icon

Table 1 Optimized Thickness of Five Double-Layer Antireflection Designs (without a Passivation Layer) and the Corresponding Jsc/Jmax Ratios

Tables Icon

Table 2 Jsc/Jmax Ratios of All the Optimized Double-Layer Antireflection Designs with Five Different Passivation Layer Thicknesses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = ( R A S R B S + R A P R B P ) / 2 ,
T = ( T A S + T A P ) / 2 + ( R A S T B S + R A P T B P ) / 2 ,
J sc = q λ 1 λ 2 F ( λ ) η ( λ ) T ( λ ) d λ ,
J sc = q λ 1 λ 2 F ( λ ) η ( λ ) T ( λ ) Δ λ ,

Metrics