Abstract

Two techniques based on planar laser-induced fluorescence of NO are applied to the measurement of two-dimensional temperature fields in gaseous flows. In the single-line technique, the NO fluorescence signal, which is in general a function of temperature, pressure, and mole fraction, can be reduced to a function of temperature alone. In this limit, a single measurement of fluorescence can be directly related to temperature. In contrast, in the two-line thermometry technique the ratio of fluorescence signals resulting from excitation of two different rovibronic states is related to the fractional populations in the initial states, which are solely a function of temperature. The one-line method is applied to the study of a laminar heated jet, and the two-line technique is used to measure temperature in a supersonic underexpanded jet. In addition, energy transfer in NO laser-induced fluorescence is analyzed with multilevel rate equation models. Finally, an accurate model is developed for prediction of the temperature dependence of the NO fluorescence signal.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature and pressure imaging using infrared planar laser-induced fluorescence

David A. Rothamer and Ronald K. Hanson
Appl. Opt. 49(33) 6436-6447 (2010)

Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence

Jennifer L. Palmer and Ronald K. Hanson
Appl. Opt. 35(3) 485-499 (1996)

Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence

Mark C. Thurber, Frédéric Grisch, and Ronald K. Hanson
Opt. Lett. 22(4) 251-253 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription