Abstract

A new type of dye laser operating in a single-mode optical fiber has been studied. The gain is produced by surrounding a tapered section of the fiber with laser dye. Interaction of the light in the fiber with the laser dye is achieved through the exposed evanescent field at the taper waist. Low lasing thresholds (25–65 mW) are obtained as a result of the high intensities at the taper waist. These tapered fiber dye lasers combine the advantages of a laser in fiber form with the wide spectral tuning ranges provided by laser dyes. Three experiments, demonstrating low-threshold operation of a grating tuned laser, an all-fiber ring laser, and cw lasing in tapered fiber dye devices, are presented.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schäfer, Dye Lasers (Springer-Verlag, New York, 1990).
  2. E. P. Ippen, C. V. Shank, “Evanescent-field-pumped dye laser,” Appl. Phys. Lett. 21, 301–302 (1972).
    [CrossRef]
  3. W. V. Sorin, K. P. Jackson, H. J. Shaw, “Evanescent amplification in a single-mode optical fibre,” Electron Lett. 19, 820–822 (1983).
    [CrossRef]
  4. W. V. Sorin, M. H. Yu, “Single-mode-fibre ring dye laser,” Opt. Lett. 10, 550–552 (1985).
    [CrossRef] [PubMed]
  5. H. S. Mackenzie, F. P. Payne, “Evanescent field amplification in a tapered single-mode fibre,” Electron. Lett. 26, 130–132 (1990).
    [CrossRef]
  6. G. Pendock, H. S. Mackenzie, F. P. Payne, “Tapered optical fibre dye laser,” Electron. Lett. 28, 149–150 (1992).
    [CrossRef]
  7. W. J. Stewart, J. D. Love, “Design limitations on tapers and couplers in single mode fibres,” in Proceedings of the Eleventh European Conference on Optical Communications (Istituto Internationale delle Comunicazioni, Genova, 1985), pp. 559–562.
  8. B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
    [CrossRef]
  9. P. Flamant, Y. J. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
    [CrossRef]
  10. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 232.
  11. H. S. Mackenzie, “Evanescent-field devices for non-linear optical applications,” Ph.D. dissertation (University of Cambridge, Cambridge, 1990).
  12. R. J. Black, J. Lapierre, J. Bures, “Field evolution in doubly clad lightguides,” Proc. Inst. Electr. Eng Part J 134, 105–110 (1987).
  13. F. J. Duarte, L. W. Hillman, Dye Laser Principles (Academic, San Diego, Calif., 1990), p. 28.
  14. I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
    [CrossRef]
  15. H. S. Mackenzie, F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre,” Electron. Lett. 26, 1744–1745 (1990).
    [CrossRef]
  16. O. G. Peterson, S. A. Tuccio, B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
    [CrossRef]

1992 (1)

G. Pendock, H. S. Mackenzie, F. P. Payne, “Tapered optical fibre dye laser,” Electron. Lett. 28, 149–150 (1992).
[CrossRef]

1990 (2)

H. S. Mackenzie, F. P. Payne, “Evanescent field amplification in a tapered single-mode fibre,” Electron. Lett. 26, 130–132 (1990).
[CrossRef]

H. S. Mackenzie, F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre,” Electron. Lett. 26, 1744–1745 (1990).
[CrossRef]

1987 (1)

R. J. Black, J. Lapierre, J. Bures, “Field evolution in doubly clad lightguides,” Proc. Inst. Electr. Eng Part J 134, 105–110 (1987).

1986 (1)

I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
[CrossRef]

1985 (1)

1983 (1)

W. V. Sorin, K. P. Jackson, H. J. Shaw, “Evanescent amplification in a single-mode optical fibre,” Electron Lett. 19, 820–822 (1983).
[CrossRef]

1973 (1)

P. Flamant, Y. J. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

1972 (1)

E. P. Ippen, C. V. Shank, “Evanescent-field-pumped dye laser,” Appl. Phys. Lett. 21, 301–302 (1972).
[CrossRef]

1970 (1)

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

1969 (1)

B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Bennion, I.

I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
[CrossRef]

Black, R. J.

R. J. Black, J. Lapierre, J. Bures, “Field evolution in doubly clad lightguides,” Proc. Inst. Electr. Eng Part J 134, 105–110 (1987).

Bures, J.

R. J. Black, J. Lapierre, J. Bures, “Field evolution in doubly clad lightguides,” Proc. Inst. Electr. Eng Part J 134, 105–110 (1987).

Duarte, F. J.

F. J. Duarte, L. W. Hillman, Dye Laser Principles (Academic, San Diego, Calif., 1990), p. 28.

Flamant, P.

P. Flamant, Y. J. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

Hillman, L. W.

F. J. Duarte, L. W. Hillman, Dye Laser Principles (Academic, San Diego, Calif., 1990), p. 28.

Ippen, E. P.

E. P. Ippen, C. V. Shank, “Evanescent-field-pumped dye laser,” Appl. Phys. Lett. 21, 301–302 (1972).
[CrossRef]

Jackson, K. P.

W. V. Sorin, K. P. Jackson, H. J. Shaw, “Evanescent amplification in a single-mode optical fibre,” Electron Lett. 19, 820–822 (1983).
[CrossRef]

Lapierre, J.

R. J. Black, J. Lapierre, J. Bures, “Field evolution in doubly clad lightguides,” Proc. Inst. Electr. Eng Part J 134, 105–110 (1987).

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 232.

W. J. Stewart, J. D. Love, “Design limitations on tapers and couplers in single mode fibres,” in Proceedings of the Eleventh European Conference on Optical Communications (Istituto Internationale delle Comunicazioni, Genova, 1985), pp. 559–562.

Mackenzie, H. S.

G. Pendock, H. S. Mackenzie, F. P. Payne, “Tapered optical fibre dye laser,” Electron. Lett. 28, 149–150 (1992).
[CrossRef]

H. S. Mackenzie, F. P. Payne, “Evanescent field amplification in a tapered single-mode fibre,” Electron. Lett. 26, 130–132 (1990).
[CrossRef]

H. S. Mackenzie, F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre,” Electron. Lett. 26, 1744–1745 (1990).
[CrossRef]

H. S. Mackenzie, “Evanescent-field devices for non-linear optical applications,” Ph.D. dissertation (University of Cambridge, Cambridge, 1990).

Meyer, Y. J.

P. Flamant, Y. J. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

Payne, F. P.

G. Pendock, H. S. Mackenzie, F. P. Payne, “Tapered optical fibre dye laser,” Electron. Lett. 28, 149–150 (1992).
[CrossRef]

H. S. Mackenzie, F. P. Payne, “Evanescent field amplification in a tapered single-mode fibre,” Electron. Lett. 26, 130–132 (1990).
[CrossRef]

H. S. Mackenzie, F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre,” Electron. Lett. 26, 1744–1745 (1990).
[CrossRef]

Pendock, G.

G. Pendock, H. S. Mackenzie, F. P. Payne, “Tapered optical fibre dye laser,” Electron. Lett. 28, 149–150 (1992).
[CrossRef]

Peterson, O. G.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

Reis, D. C.

I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
[CrossRef]

Rowe, C. J.

I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
[CrossRef]

Schäfer, F. P.

F. P. Schäfer, Dye Lasers (Springer-Verlag, New York, 1990).

Shank, C. V.

E. P. Ippen, C. V. Shank, “Evanescent-field-pumped dye laser,” Appl. Phys. Lett. 21, 301–302 (1972).
[CrossRef]

Shaw, H. J.

W. V. Sorin, K. P. Jackson, H. J. Shaw, “Evanescent amplification in a single-mode optical fibre,” Electron Lett. 19, 820–822 (1983).
[CrossRef]

Snavely, B. B.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 232.

Sorin, W. V.

W. V. Sorin, M. H. Yu, “Single-mode-fibre ring dye laser,” Opt. Lett. 10, 550–552 (1985).
[CrossRef] [PubMed]

W. V. Sorin, K. P. Jackson, H. J. Shaw, “Evanescent amplification in a single-mode optical fibre,” Electron Lett. 19, 820–822 (1983).
[CrossRef]

Stewart, W. J.

I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
[CrossRef]

W. J. Stewart, J. D. Love, “Design limitations on tapers and couplers in single mode fibres,” in Proceedings of the Eleventh European Conference on Optical Communications (Istituto Internationale delle Comunicazioni, Genova, 1985), pp. 559–562.

Tuccio, S. A.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

Yu, M. H.

Appl. Phys. Lett. (2)

E. P. Ippen, C. V. Shank, “Evanescent-field-pumped dye laser,” Appl. Phys. Lett. 21, 301–302 (1972).
[CrossRef]

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

Electron Lett. (1)

W. V. Sorin, K. P. Jackson, H. J. Shaw, “Evanescent amplification in a single-mode optical fibre,” Electron Lett. 19, 820–822 (1983).
[CrossRef]

Electron. Lett. (4)

H. S. Mackenzie, F. P. Payne, “Evanescent field amplification in a tapered single-mode fibre,” Electron. Lett. 26, 130–132 (1990).
[CrossRef]

G. Pendock, H. S. Mackenzie, F. P. Payne, “Tapered optical fibre dye laser,” Electron. Lett. 28, 149–150 (1992).
[CrossRef]

I. Bennion, D. C. Reis, C. J. Rowe, W. J. Stewart, “High-reflectivity monomode-fibre grating filters,” Electron. Lett. 22, 341–343 (1986).
[CrossRef]

H. S. Mackenzie, F. P. Payne, “Saturable absorption in a tapered single-mode optical fibre,” Electron. Lett. 26, 1744–1745 (1990).
[CrossRef]

Opt. Commun. (1)

P. Flamant, Y. J. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Proc. Inst. Electr. Eng Part J (1)

R. J. Black, J. Lapierre, J. Bures, “Field evolution in doubly clad lightguides,” Proc. Inst. Electr. Eng Part J 134, 105–110 (1987).

Other (5)

F. J. Duarte, L. W. Hillman, Dye Laser Principles (Academic, San Diego, Calif., 1990), p. 28.

F. P. Schäfer, Dye Lasers (Springer-Verlag, New York, 1990).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 232.

H. S. Mackenzie, “Evanescent-field devices for non-linear optical applications,” Ph.D. dissertation (University of Cambridge, Cambridge, 1990).

W. J. Stewart, J. D. Love, “Design limitations on tapers and couplers in single mode fibres,” in Proceedings of the Eleventh European Conference on Optical Communications (Istituto Internationale delle Comunicazioni, Genova, 1985), pp. 559–562.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Tapered optical fiber surrounded by laser dye. The field evolves from a core-guided mode to a cladding-guided mode at the waist where the evanescent field interacts with the dye.

Fig. 2
Fig. 2

Modeled taper gains for dye concentrations of 2 × 10−4 M and 5 × 10−4 M as a function of pump power. The solution has a refractive index of 1.445.

Fig. 3
Fig. 3

Gain dependence on solution refractive index at pump powers of 200 mW. The responses for four increasing dye concentrations are shown.

Fig. 4
Fig. 4

Photograph of a packaged fiber taper. The dye solution is circulated through the groove around the taper waist.

Fig. 5
Fig. 5

Experimental setup for the grating-tuned fiber dye laser.

Fig. 6
Fig. 6

Output tuning curve corresponding to a pump power of 130 mW. The dye used was Rhodamine 6G.

Fig. 7
Fig. 7

Laser output and pump pulse shapes. The laser output pulse shape is magnified by a factor of 10. The pump pulse shown here has a peak power of 100 mW in the fiber with the corresponding laser output pulse giving a peak power of 7 mW.

Fig. 8
Fig. 8

Experimental setup of the fiber ring dye laser. The WDM coupler passes the 532-nm pump pulses into the loop but contains the lasing signal.

Fig. 9
Fig. 9

Laser output characteristic of the ring lasr for a 3 × 10−4 M solution of DCM with a refractive index of 1.445. The output power is that from only one arm of the output coupler.

Fig. 10
Fig. 10

Spectral output of the ring laser with DCM dye at a pump power of 130 mW.

Fig. 11
Fig. 11

Laser output from a Rhodamine 6G solution pumped by a 90-μs-long pulse from an Ar-ion laser. The laser output pulse shape is magnified by a factor of 10. The initial decay in output power is due to the heating of the solution.

Tables (1)

Tables Icon

Table 1 Values Used in Computation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N G ( r , z ) = N T I sat I sat + I p ( r , z ) ,
N S ( r , z ) = N T I p ( r , z ) I sat + I p ( r , z ) .
I sat = h ν p τ f σ a ,
I p ( r , z ) = P p ( z ) Φ p 2 ( r , z ) ,
I s ( r , z ) = P p ( z ) Φ s 2 ( r , z ) .
d P p ( z ) d z = - P p ( z ) r > a ( z ) σ a N G ( r , z ) Φ p 2 ( r , z ) d 2 r ,
d P s ( z ) d z = P s ( z ) r > a ( z ) σ e N S ( r , z ) Φ s 2 ( r , z ) d 2 r ,
d P p ( z ) d z = - P p ( z ) σ a N T × r > a ( z ) ϕ p 2 ( r , z ) 1 + [ P p ( z ) Φ p 2 ( r , z ) / I sat ] d 2 r ,
d P s ( z ) d z = P s ( z ) σ e N T P p ( z ) I sat × r > a ( z ) Φ p 2 ( r , z ) Φ s 2 ( r , z ) 1 + [ P p ( z ) Φ p 2 ( r , z ) / I sat ] d 2 r .
a ( z ) = R 0 exp ( - z / L ) .

Metrics