Abstract

Conversion of a linearly polarized CO2 laser beam into a radially polarized beam is demonstrated with a novel double-interferometer system. The first Mach–Zehnder interferometer converts the linearly polarized input beam into two beams with sin2 θ and cos2 θ intensity profiles, where θ is the azimuthal angle. This is accomplished by using two spiral-phase-delay plates with opposite handedness in the two legs of the interferometer to impart a one-wave phase delay azimuthally across the face of the beams. After these beams are interfered with, the resulting beams are sent directly into the second Mach–Zehnder interferometer, where the polarization direction of one beam is rotated by 90°. The beams are then recombined at the output of the second interferometer with a polarization-sensitive beam splitter to generate a radially polarized beam. The output beam is ≈ 92% radially polarized and contains ≈ 85% of the input power. This system will be used in upcoming laser particle acceleration experiments.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [CrossRef] [PubMed]
  2. W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).
  3. R. D. Romea, W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
    [CrossRef]
  4. T. V. Higgins, “Spiral waveplate design produces radially polarized laser light,” Laser Focus World 28(4), 18–20 (1992).
  5. J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
    [CrossRef]
  6. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1531 (1992).
    [CrossRef]

1992

T. V. Higgins, “Spiral waveplate design produces radially polarized laser light,” Laser Focus World 28(4), 18–20 (1992).

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1531 (1992).
[CrossRef]

1990

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
[CrossRef] [PubMed]

R. D. Romea, W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

1989

W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).

1983

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Fontana, J. R.

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Ford, D. H.

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1531 (1992).
[CrossRef]

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
[CrossRef] [PubMed]

W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).

Higgins, T. V.

T. V. Higgins, “Spiral waveplate design produces radially polarized laser light,” Laser Focus World 28(4), 18–20 (1992).

Kimura, W. D.

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1531 (1992).
[CrossRef]

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
[CrossRef] [PubMed]

R. D. Romea, W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).

Pantell, R. H.

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Romea, R. D.

R. D. Romea, W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).

Tidwell, S. C.

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1531 (1992).
[CrossRef]

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
[CrossRef] [PubMed]

W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).

Advanced Accelerator Concepts

W. D. Kimura, R. D. Romea, S. C. Tidwell, D. H. Ford, “Progress on inverse Čerenkov laser accelerator experiment,” in Advanced Accelerator Concepts, AIP Conf. Proc. 193, 203–210 (1989).

Appl. Opt.

J. Appl. Phys.

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Laser Focus World

T. V. Higgins, “Spiral waveplate design produces radially polarized laser light,” Laser Focus World 28(4), 18–20 (1992).

Opt. Eng.

S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1531 (1992).
[CrossRef]

Phys. Rev. D

R. D. Romea, W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Coherent combination of laser beams with cos2 θ and sin2 θ intensity distributions yields a radially polarized beam.

Fig. 2
Fig. 2

Configuration for combining beams E1 and E2 at dielectric boundary with indices of refraction n1 and n2, where n2 > n1.

Fig. 3
Fig. 3

Schematic layout of the radial-polarization converter optical system.

Fig. 4
Fig. 4

Sketch of the spiral-phase-delay plate. The coating thickness has been greatly exaggerated for clarity.

Fig. 5
Fig. 5

Self-interference fringe pattern of the spiral-phase-delay plate coating taken with a HeNe laser (λ = 632.8 nm).

Fig. 6
Fig. 6

Schematic of the inverse Čerenkov laser acceleration experiment optical system showing the location of the radial-polarization converter system. BS, beam splitter.

Fig. 7
Fig. 7

CO2 laser beam intensity profile within the axicon focal region inside the gas cell (see Fig. 6). Full profile of the radially polarized laser beam showing a J1(r) Bessel pattern distribution: (a) theoretical prediction; (b) experimentally measured distribution using the cw CO2 alignment laser (see Fig. 6). Resultant profile after transmission through a linear polarizer oriented at 45° (i.e., perpendicular to the null in the center of the pattern): (c) theoretical prediction; (d) experimentally measured distribution. Resultant profile after transmission through a linear polarizer oriented at 135°: (e) theoretical prediction; (f) experimentally measured distribution.

Fig. 8
Fig. 8

Detailed schematic of the radial-polarization converter optical system. BS, beam splitter; SPD, spiral-phase-delay plate; M, mirror. The laser beam electric-field directions at various points within the system are also sketched, with θ = 0 defined along the x axis (i.e., 3 o’clock horizontal position).

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E 0 2 exp [ - i f ( θ ) ] ,
E 2 = E 0 2 exp [ i f ( θ ) ] ,
E 3 = E 1 r + E 2 t ,
E 4 = E 1 t + E 2 r ,
E 1 r = E 1 2 exp ( i π ) = - E 0 2 exp [ - i f ( θ ) ] ,
E 1 t = E 1 2 = E 0 2 exp [ - i f ( θ ) ] ,
E 2 r = E 2 2 = E 0 2 exp [ i f ( θ ) ] ,
E 2 t = E 2 2 = E 0 2 exp [ i f ( θ ) ] .
I 3 = E 3 × E 3 * = ( E 1 r + E 2 t ) ( E 1 r * + E 2 t * ) = ( E 1 r E 1 r * + E 2 t E 2 t * + E 1 r E 2 t * + E 2 t E 1 r * ) = E 0 2 { 2 - exp [ - 2 i f ( θ ) ] - exp [ 2 i f ( θ ) ] } / 4.
I 3 = I 0 sin 2 [ f ( θ ) ] ,
E 0 = exp [ i ( k r - ω t ) ] f ( r ) ( E 0 x i ^ + E 0 y j ^ )
E 0 = exp [ i ( k r - ω t ) ] f ( r ) E 0 y j ^ .
E 0 = E 0 y j ^ .
E 1 = E 0 y 2 exp ( i Δ ψ 1 ) j ^ , E 2 = E 0 y 2 exp ( i π ) j ^ = - E 0 y 2 j ^ ,
E 1 = E 0 y 2 exp ( i θ ) exp ( i Δ ψ 1 ) j ^ , E 2 = - E 0 y 2 exp ( - i θ ) j ^ ,
E 1 = - E 0 y 2 exp [ i ( θ + Δ ψ 1 ) j ^ , E 2 = E 0 y 2 exp ( - i θ ) j ^ .
E 1 t = E 1 2 , E 1 r = - E 1 2 , E 2 t = E 2 2 , E 2 r = E 2 2 ,
E 3 = - E 1 + E 2 2 = E 0 y 2 { exp [ i ( θ + Δ ψ 1 ) ] + exp ( - i θ ) } j ^ , E 4 = E 1 + E 2 2 = - E 0 y 2 { exp [ i ( θ + Δ ψ 1 ) ] - exp ( i θ ) } j ^ .
E 3 = E 0 y 2 [ - exp ( i θ ) + exp ( - i θ ) ] j ^ = - i E 0 y sin θ j ^ , E 4 = - E 0 y 2 [ - exp ( i θ ) - exp ( - i θ ) ] j ^ = E 0 y cos θ j ^ .
E 3 = i E 0 y sin θ j ^ , E 4 = - E 0 y cos θ j ^ .
E 3 = i E 0 y exp ( i Δ ψ 2 ) sin θ j ^ , E 4 = - E 0 y cos θ i ^ .
E 5 = E 3 r + E 4 t = exp ( i π ) E 3 + E 4 = - E 3 + E 4 ,
E 5 = - E 0 y ( i sin θ exp ( i Δ ψ 2 ) j ^ + cos θ i ^ ) .
i ^ = cos θ r ^ - sin θ θ ^ , j ^ = sin θ r ^ + cos θ θ ^ .
E 5 = - E 0 y [ i sin θ exp ( i Δ ψ 2 ) ( sin θ r ^ + cos θ θ ^ ) + cos θ ( cos θ r ^ - sin θ θ ^ ) ] , = - E 0 y { r ^ [ i sin 2 θ exp ( i Δ ψ 2 ) + cos 2 θ ] + θ ^ [ i sin θ cos θ exp ( i Δ ψ 2 ) - sin θ cos θ ] } .
E 5 = - E 0 y r ^ .
E 5 = exp [ i ( k r - ω t ) ] f ( r ) E 0 y r ^ .

Metrics