Abstract

Time and spatial-gated Fourier spectra and imaging were measured and analyzed. A picosecond Kerr–Fourier gate was used to image objects by selecting the spatial frequencies of objects illuminated by a laser pulse passing through a thick turbid medium. The earlier arriving ballistic/snake light and most of the later scattered light were spatially filtered and temporally separated to form an image. The image contrast and the signal-to-noise ratio of hidden objects in turbid media were greatly improved with the addition of Fourier spatial filtering.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [Crossref] [PubMed]
  2. J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
    [Crossref] [PubMed]
  3. H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [Crossref] [PubMed]
  4. A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
    [Crossref]
  5. K. G. Spears, J. Serafin, N. H. Abramson, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng 36, 1210–1221 (1989); N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
    [Crossref] [PubMed]
  6. B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
    [Crossref]
  7. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med Phys. 17, 351–356 (1990).
    [Crossref] [PubMed]
  8. S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
    [Crossref]
  9. J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
    [Crossref]
  10. S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
    [Crossref] [PubMed]
  11. Y. Kusa, A. Ishmaru, A. P. Bruckner, “Experiments on picosecond pulse propagation in a diffusive medium,” J. Opt. Soc. Am. 73, 1812–1815 (1983).
    [Crossref]
  12. K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
    [Crossref] [PubMed]
  13. P. Ho, L. Wang, R. R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).
  14. P. Ho, G. Zhang, P. Baldeck, R. R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp 95–109.
  15. L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).
  16. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  17. P. Latimer, F. Wamble, “Light scattering by aggregates of large colloidal particles,” Appl. Opt. 21, 2447–2454 (1982).
    [Crossref] [PubMed]
  18. Y. Kuga, A. Ishimaru, “Experiments on picosecond pulse propagation in a diffuse medium,” J. Opt. Soc. Am. 12, 1812–1815 (1983).
    [Crossref]
  19. M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [Crossref]
  20. P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
    [Crossref]

1991 (5)

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[Crossref]

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[Crossref]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[Crossref] [PubMed]

1990 (3)

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[Crossref] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[Crossref]

1989 (2)

K. G. Spears, J. Serafin, N. H. Abramson, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng 36, 1210–1221 (1989); N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[Crossref] [PubMed]

1988 (1)

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

1983 (2)

Y. Kuga, A. Ishimaru, “Experiments on picosecond pulse propagation in a diffuse medium,” J. Opt. Soc. Am. 12, 1812–1815 (1983).
[Crossref]

Y. Kusa, A. Ishmaru, A. P. Bruckner, “Experiments on picosecond pulse propagation in a diffusive medium,” J. Opt. Soc. Am. 73, 1812–1815 (1983).
[Crossref]

1982 (1)

1979 (1)

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[Crossref]

1969 (1)

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng 36, 1210–1221 (1989); N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

Alfano, R. R.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[Crossref] [PubMed]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[Crossref]

P. Ho, L. Wang, R. R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

P. Ho, G. Zhang, P. Baldeck, R. R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp 95–109.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Anderson-Engels, S.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[Crossref]

Baldeck, P.

P. Ho, G. Zhang, P. Baldeck, R. R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp 95–109.

Berg, R.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[Crossref]

Berndt, K.

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[Crossref]

Boretsky, R.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Bruckner, A. P.

Chance, B.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Chen, H.

Chen, Y.

Cohen, P.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

De Silvestri, S.

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Dillworth, D.

Duguay, M. A.

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

Feinberg, J.

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[Crossref]

Finander, M.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Fujimoto, J.

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Greenfield, R.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Hansen, J.

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

Hebden, J. C.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

Ho, P.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

P. Ho, L. Wang, R. R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

P. Ho, G. Zhang, P. Baldeck, R. R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp 95–109.

Ho, P. P.

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[Crossref]

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Ippen, E.

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Ishimaru, A.

Y. Kuga, A. Ishimaru, “Experiments on picosecond pulse propagation in a diffuse medium,” J. Opt. Soc. Am. 12, 1812–1815 (1983).
[Crossref]

Ishmaru, A.

Jacques, S. L.

Jarlman, O.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[Crossref]

Kaufmann, K.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Kruger, R. A.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

Kuga, Y.

Y. Kuga, A. Ishimaru, “Experiments on picosecond pulse propagation in a diffuse medium,” J. Opt. Soc. Am. 12, 1812–1815 (1983).
[Crossref]

Kusa, Y.

Lakowicz, J.

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[Crossref]

Latimer, P.

Leigh, J.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Leith, E.

Levy, W.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Liu, Y.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Lopez, J.

Margolis, R.

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Miyake, J.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Nioka, S.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Oseroff, A.

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Puliafito, C.

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Rebane, A.

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[Crossref]

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng 36, 1210–1221 (1989); N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

Smith, D.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng 36, 1210–1221 (1989); N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

Svanberg, S.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[Crossref]

Valdmanis, J.

Wamble, F.

Wang, L.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

P. Ho, L. Wang, R. R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Yoo, K. M.

Yoshioka, H.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Young, M.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

P. Ho, G. Zhang, P. Baldeck, R. R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp 95–109.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[Crossref]

IEEE Trans. Biomed. Eng (1)

K. G. Spears, J. Serafin, N. H. Abramson, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng 36, 1210–1221 (1989); N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

Y. Kuga, A. Ishimaru, “Experiments on picosecond pulse propagation in a diffuse medium,” J. Opt. Soc. Am. 12, 1812–1815 (1983).
[Crossref]

Y. Kusa, A. Ishmaru, A. P. Bruckner, “Experiments on picosecond pulse propagation in a diffusive medium,” J. Opt. Soc. Am. 73, 1812–1815 (1983).
[Crossref]

Med Phys. (1)

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

Nature (London) (1)

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[Crossref]

Proc. Natl. Acad. Sci. (USA) (1)

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. (USA) 5, 4971–4975 (1988).
[Crossref]

Rev. Sci. Instrum. (1)

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[Crossref]

Science (2)

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

J. Fujimoto, S. De Silvestri, E. Ippen, C. Puliafito, R. Margolis, A. Oseroff, “Optical coherence tomography,” Science 254, 1178–1182 (1991); “Femtosecond optical ranging in biologica systems,” Opt. Lett. 11, 150–152 (1986).
[Crossref] [PubMed]

Other (4)

P. Ho, L. Wang, R. R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

P. Ho, G. Zhang, P. Baldeck, R. R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp 95–109.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the Fourier spatial spectrum of an object hidden in a turbid medium: f’s, focal lengths; L, Fourier-transform lens; FFP, front focal plane; S, scattering particles; BL, ballistic light; SL, scattering light; CL, collimated illumination light; TM, turbid medium; FTSP, Fourier-transform spectrum plane (or back focal plane). FTS is coherent when D = E. (b) Abbe’s imaging principle. A plane wave is used to illuminate an object along the z axis. The optical imaging process consists of two steps: (1) a forward Fourier transform, or the diffraction from the object to the spectrum plane, and (2) a backward Fourier transform, or the interference from the spectrum to the image plane. After lens L of focal length f, an image is formed at the image plane that follows the lens equation 1/a + 1/b = 1/f: a, distance from the object to the lens; b, distance from the lens to the image plane; DR’s, diffusive rays.

Fig. 2
Fig. 2

Picosecond Kerr-gate time-resolved Fourier spectrum and imaging system. A mode-locked (mL) Nd+:glass laser with 8-ps pulse duration was used as the light source. Pulses of 1054 nm were passed through a KDP crystal to generate second-harmonic 527-nm pulses. Pulses of 527 nm were used to illuminate sample media. A 1054-nm beam was used to open the time gate. The Kerr cell was set at the back focal plane of Fourier-transform lens L1. The signal was detected by using either an image-intensified CCD camera or a cooled CCD camera. For the Fourier imaging measurement of the object, lens L2 was located one focal length away from the FTSP, and the CCD camera was located one focal length from L2 as the 4f imaging system. For the Fourier spectrum measurement at FTSP, L2 was moved backward to directly image the spectrum at FTSP onto the CCD following the lens law as 1/(distance from FTSP to L2) + 1/(distance from L2 to CCD) = f. P, polarizer; A, analyzer; f’s, focal lengths of 60 cm; BS, beam splitter; DL, movable prism for time delay; PC, personal computer; CCD, cooled CCD camera or image-intensified CCD camera.

Fig. 3
Fig. 3

Experimental results of a time-resolved Fourier-transform spectrum (TRFTS) of three turbid materials at the FTSP illuminated by an ~ 1-cm-diameter collimated 527-nm laser beam. Each test material was filled within a 2.54 cm × 2.54 cm × 4.5 cm transparent cell. The samples are (a) 0.25% 11.9-μm-diameter polystyrene-bead solutions, (b) 1% intralipid solution, and (c) clear water. The gating times are (I) T = 0 and (II) T = 20 ps. There was no difference between the distributions of the TRFTS of images of water (c) measured at T = 0 and T = 20 ps.

Fig. 4
Fig. 4

Digitized intensity profiles of a slice of the TDFTS images from Fig. 3. The samples are (a) polystyrene particle solution, (b) intralipid solution, and (c) clear water. The gating times are: (I) T = 0 ps and (II) T = 20 ps.

Fig. 5
Fig. 5

Comparison of temporal intensity profiles of the 527-nm transmitted light signal of a test grid in an intralipid solution passed through a Fourier–Kerr gate (curve I) and a conventional Kerr gate (curve II). The vertical scale is an arbitrary scale of the transmitted signal intensity. For easy comparison the data from curve I were magnified by 7 times from the absolute values. For data point is an average of ~5 measurements.

Fig. 6
Fig. 6

Time-resolved Fourier spatial-filtering Kerr imaging of a 1-mm-width test grid in a 1% intralipid solution filled in a 2.54 cm × 2.54 cm × 4.5 cm transparent cell. An aperture at the gate was introduced by the nonlinear refractive index. (a) Image contrast as a function of gating time T and the spatial aperture size of a picosecond Kerr-gate imaging system. With adjustment of the gating beam diameter at the constant gating intensity, two curves were obtained: (I) 1.5-mm aperture and (II) 5-mm aperture. Conventional time-resolved Kerr imaging is shown by the following curves (mechanical aperture is set at the FTSP): (III) with a 2-mm-diameter aperture and (IV) with no aperture. (b) SNI as a function of gating time T of the Fourier spatial-filtered Kerr gate over the conventional Kerr gate. The vertical scale is the gain factor of SNI.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f x = Δ X / ( λ f ) ,
Δ X = f Δ Θ
Δ Θ λ / D ,
Δ Θ 1.22 λ / D .
CONTRAST = ( I max - I min ) / ( I max + I min ) ,
SNI = ( SNR ) Fourier - Kerr / ( SNR ) Kerr .

Metrics