Abstract

A design for a distributed free-space optical system is presented that provides interconnection of electronic processing elements at the board level of packaging. The system can be expanded to more than two boards and transfers an array of data in parallel between connection planes. The design uses binary optic microlens arrays to collimate and collect light from surface-emitting lasers, and it uses substrate-mode holographic window elements for directing light to and from the bus region. The use of a collection lens array for extending the alignment tolerance of the imaging system is also discussed. The paper concludes with experimental demonstrations of critical system components and performance with 64-bit data arrays.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Feldman, S. C. Esner, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  2. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989).
    [CrossRef] [PubMed]
  3. E. Bradley, P. K. Yu, A. R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnects,” Opt. Eng. 28, 201–211 (1989).
  4. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
    [CrossRef]
  5. C. Vergnolle, B. Houssay, “Interconnection requirements in an avionic system,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 648–658 (1990).
  6. R. K. Kostuk, Y. T. Huang, M. Kato, “Multiprocessor optical bus,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Oppt. Instrum. Eng.1389, 515–522 (1990).
  7. M. B. Ritter, “Practical packaging constraints and intra-computer optical interconnects,” presented at the IEEE Topical Meeting on Electrical Performance and Electronic Packaging, Tucson, Ariz., 22–24 April, 1992.
  8. R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
    [CrossRef]
  9. T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple bus architectures,” Computer 20, 42–48 (1987).
    [CrossRef]
  10. T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
    [CrossRef]
  11. A. C. Cangellaris, J. L. Prince, L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high speed interconnect systems,” IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 154–159 (1990).
    [CrossRef]
  12. C. Sebillotte, “Holographic optical backplane for board interconnections,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 600–611 (1990)
  13. H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
    [CrossRef]
  14. T. Sakano, T. Matsumoto, K. Noguchi, T. Sawabe, “Design and performance of a multiprocessor system employing board-to-board free-space optical interconnections: COSINE-1,” Appl. Opt. 30, 2334–2343 (1991).
    [CrossRef] [PubMed]
  15. D. Z. Tsang, “Free-space board-to-board optical interconnections,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1563, 66–71 (1991).
  16. D. Z. Tsang, “Techniques for implementation of high-speed free-space optical interconnections,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.
  17. J. Jahns, Y. H. Lee, C. A. Burrus, J. L. Jewell, “Optical interconnects using top-surface-emitting microlasers and planar optics,” Appl. Opt. 31, 592–597 (1992).
    [CrossRef] [PubMed]
  18. D. P. Seraphim, R. Lasky, C. Y. Li, Principles of Electronic Packaging (McGraw-Hill, New York, 1989), Chap. 1.
  19. R. K. Kostuk, “Simulation of board-level free-space optical interconnects for electronic processing,” Appl. Opt. 31, 2438–2445 (1992).
    [CrossRef] [PubMed]
  20. A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).
  21. L. N. Bhuyan, “Interconnection networks for parallel and distributed processing,” Computer 20, 9–12 (1987).
    [CrossRef]
  22. J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
    [CrossRef]
  23. N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
    [CrossRef] [PubMed]
  24. M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
    [CrossRef]
  25. O. Svelto, Principles of Lasers (Plenum, NewYork, 1976), p. 264.
  26. Ref. 25, p. 263.
  27. J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 97.
  28. W. T. Welford, “A vector raytracing equation for hologram lenses of arbitrary shape,” Opt. Commun. 14, 322–323 (1975).
    [CrossRef]
  29. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  31. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reduced alignment and chromatic sensitivity of holographic optical interconnects with substrate mode holograms,” Appl. Opt. 28, 4939–4944 (1990).
    [CrossRef]
  32. K. H. Brenner, F. Sauer, “Diffractive-reflective optical interconnects,” Appl. Opt. 27, 4251–4254 (1988).
    [CrossRef] [PubMed]

1992

1991

T. Sakano, T. Matsumoto, K. Noguchi, T. Sawabe, “Design and performance of a multiprocessor system employing board-to-board free-space optical interconnections: COSINE-1,” Appl. Opt. 30, 2334–2343 (1991).
[CrossRef] [PubMed]

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

1990

A. C. Cangellaris, J. L. Prince, L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high speed interconnect systems,” IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 154–159 (1990).
[CrossRef]

R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reduced alignment and chromatic sensitivity of holographic optical interconnects with substrate mode holograms,” Appl. Opt. 28, 4939–4944 (1990).
[CrossRef]

1989

D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989).
[CrossRef] [PubMed]

E. Bradley, P. K. Yu, A. R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnects,” Opt. Eng. 28, 201–211 (1989).

1988

1987

L. N. Bhuyan, “Interconnection networks for parallel and distributed processing,” Computer 20, 9–12 (1987).
[CrossRef]

T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple bus architectures,” Computer 20, 42–48 (1987).
[CrossRef]

1986

T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
[CrossRef]

1984

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
[CrossRef]

1983

1975

W. T. Welford, “A vector raytracing equation for hologram lenses of arbitrary shape,” Opt. Commun. 14, 322–323 (1975).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
[CrossRef]

Bennion, I.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Bhuyan, L. N.

L. N. Bhuyan, “Interconnection networks for parallel and distributed processing,” Computer 20, 9–12 (1987).
[CrossRef]

Bradley, E.

E. Bradley, P. K. Yu, A. R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnects,” Opt. Eng. 28, 201–211 (1989).

Brenner, K. H.

Burrus, C. A.

Buzzard, G. D.

T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
[CrossRef]

Cangellaris, A. C.

A. C. Cangellaris, J. L. Prince, L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high speed interconnect systems,” IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 154–159 (1990).
[CrossRef]

Craft, N. C.

Dias, A. R.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Esner, S. C.

Feldblum, A. Y.

Feldman, M. R.

Gaylord, T. K.

Goodfellow, R. C.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Goodman, J. W.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
[CrossRef]

Goodwin, M. J.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Guest, C. C.

Haumann, H. J.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Hayes, J. P.

T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple bus architectures,” Computer 20, 42–48 (1987).
[CrossRef]

T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
[CrossRef]

Hetherington, D.

Houssay, B.

C. Vergnolle, B. Houssay, “Interconnection requirements in an avionic system,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 648–658 (1990).

Huang, Y. T.

R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reduced alignment and chromatic sensitivity of holographic optical interconnects with substrate mode holograms,” Appl. Opt. 28, 4939–4944 (1990).
[CrossRef]

R. K. Kostuk, Y. T. Huang, M. Kato, “Multiprocessor optical bus,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Oppt. Instrum. Eng.1389, 515–522 (1990).

Jahns, J.

Jewell, J. L.

Johnston, A. R.

E. Bradley, P. K. Yu, A. R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnects,” Opt. Eng. 28, 201–211 (1989).

Kalman, R. F.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Kato, M.

R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reduced alignment and chromatic sensitivity of holographic optical interconnects with substrate mode holograms,” Appl. Opt. 28, 4939–4944 (1990).
[CrossRef]

R. K. Kostuk, Y. T. Huang, M. Kato, “Multiprocessor optical bus,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Oppt. Instrum. Eng.1389, 515–522 (1990).

Kearley, M. Q.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

Kirby, C. J. G.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Kobolla, H.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kostuk, R. K.

R. K. Kostuk, “Simulation of board-level free-space optical interconnects for electronic processing,” Appl. Opt. 31, 2438–2445 (1992).
[CrossRef] [PubMed]

R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reduced alignment and chromatic sensitivity of holographic optical interconnects with substrate mode holograms,” Appl. Opt. 28, 4939–4944 (1990).
[CrossRef]

R. K. Kostuk, Y. T. Huang, M. Kato, “Multiprocessor optical bus,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Oppt. Instrum. Eng.1389, 515–522 (1990).

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
[CrossRef]

Lasky, R.

D. P. Seraphim, R. Lasky, C. Y. Li, Principles of Electronic Packaging (McGraw-Hill, New York, 1989), Chap. 1.

Lee, S. H.

Lee, Y. H.

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
[CrossRef]

Levi, A. F. J.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

Li, C. Y.

D. P. Seraphim, R. Lasky, C. Y. Li, Principles of Electronic Packaging (McGraw-Hill, New York, 1989), Chap. 1.

Logan, R. A.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

Matsumoto, T.

Melchior, H.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

Miller, D. A. B.

Moharam, M. G.

Morris, C. R.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

Morris, R. C.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Moseley, A. J.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Moseley, A. M.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

Mudge, T. N.

T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple bus architectures,” Computer 20, 42–48 (1987).
[CrossRef]

T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
[CrossRef]

Noguchi, K.

Nordin, R. A.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

Nottenburg, R. N.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

O’Gorman, J.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

Prince, J. L.

A. C. Cangellaris, J. L. Prince, L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high speed interconnect systems,” IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 154–159 (1990).
[CrossRef]

Ritter, M. B.

M. B. Ritter, “Practical packaging constraints and intra-computer optical interconnects,” presented at the IEEE Topical Meeting on Electrical Performance and Electronic Packaging, Tucson, Ariz., 22–24 April, 1992.

Sakano, T.

Sauer, F.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

K. H. Brenner, F. Sauer, “Diffractive-reflective optical interconnects,” Appl. Opt. 27, 4251–4254 (1988).
[CrossRef] [PubMed]

Sawabe, T.

Sawchuk, A. A.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Schmidt, J.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Schwider, J.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Sebillotte, C.

C. Sebillotte, “Holographic optical backplane for board interconnections,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 600–611 (1990)

Seraphim, D. P.

D. P. Seraphim, R. Lasky, C. Y. Li, Principles of Electronic Packaging (McGraw-Hill, New York, 1989), Chap. 1.

Stork, W.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Streibl, N.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Svelto, O.

O. Svelto, Principles of Lasers (Plenum, NewYork, 1976), p. 264.

Tanbun-Ek, T.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

Thompson, J.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

Tsang, D. Z.

D. Z. Tsang, “Techniques for implementation of high-speed free-space optical interconnections,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.

D. Z. Tsang, “Free-space board-to-board optical interconnections,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1563, 66–71 (1991).

Vakanas, L. P.

A. C. Cangellaris, J. L. Prince, L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high speed interconnect systems,” IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 154–159 (1990).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 97.

Vergnolle, C.

C. Vergnolle, B. Houssay, “Interconnection requirements in an avionic system,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 648–658 (1990).

Volkel, R.

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Welford, W. T.

W. T. Welford, “A vector raytracing equation for hologram lenses of arbitrary shape,” Opt. Commun. 14, 322–323 (1975).
[CrossRef]

Wieland, J.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

Winsor, D. C.

T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple bus architectures,” Computer 20, 42–48 (1987).
[CrossRef]

T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
[CrossRef]

Yu, P. K.

E. Bradley, P. K. Yu, A. R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnects,” Opt. Eng. 28, 201–211 (1989).

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Computer

T. N. Mudge, J. P. Hayes, D. C. Winsor, “Multiple bus architectures,” Computer 20, 42–48 (1987).
[CrossRef]

L. N. Bhuyan, “Interconnection networks for parallel and distributed processing,” Computer 20, 9–12 (1987).
[CrossRef]

Electron Lett.

J. Wieland, H. Melchior, M. Q. Kearley, C. R. Morris, A. M. Moseley, M. J. Goodwin, R. C. Goodfellow, “Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for dc-1 Gbit/s parallel links,” Electron Lett. 27, 2211–2213 (1991).
[CrossRef]

IEEE Trans. Comp. Hybrids Manuf. Technol.

A. C. Cangellaris, J. L. Prince, L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high speed interconnect systems,” IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 154–159 (1990).
[CrossRef]

J. Lightwave Technol

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol 10, 811–827 (1992)
[CrossRef]

J. Lightwave Technol.

M. J. Goodwin, A. J. Moseley, M. Q. Kearley, R. C. Morris, C. J. G. Kirby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1645 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Parallel Dist. Comput.

T. N. Mudge, J. P. Hayes, G. D. Buzzard, D. C. Winsor, “Analysis of multiple-bus interconnection networks,” J. Parallel Dist. Comput. 3, 328–343 (1986).
[CrossRef]

Opt. Commun.

W. T. Welford, “A vector raytracing equation for hologram lenses of arbitrary shape,” Opt. Commun. 14, 322–323 (1975).
[CrossRef]

Opt. Eng.

E. Bradley, P. K. Yu, A. R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnects,” Opt. Eng. 28, 201–211 (1989).

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

H. J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Opt. Lett.

Proc. IEEE

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866(1984).
[CrossRef]

Other

C. Vergnolle, B. Houssay, “Interconnection requirements in an avionic system,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 648–658 (1990).

R. K. Kostuk, Y. T. Huang, M. Kato, “Multiprocessor optical bus,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Oppt. Instrum. Eng.1389, 515–522 (1990).

M. B. Ritter, “Practical packaging constraints and intra-computer optical interconnects,” presented at the IEEE Topical Meeting on Electrical Performance and Electronic Packaging, Tucson, Ariz., 22–24 April, 1992.

C. Sebillotte, “Holographic optical backplane for board interconnections,” in Microelectronic Interconnects and Packaging: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 600–611 (1990)

D. Z. Tsang, “Free-space board-to-board optical interconnections,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1563, 66–71 (1991).

D. Z. Tsang, “Techniques for implementation of high-speed free-space optical interconnections,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 132–135.

O. Svelto, Principles of Lasers (Plenum, NewYork, 1976), p. 264.

Ref. 25, p. 263.

J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 97.

D. P. Seraphim, R. Lasky, C. Y. Li, Principles of Electronic Packaging (McGraw-Hill, New York, 1989), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of a multiple-bus interconnect system for connecting n processing elements (P i ) with m memory elements (M i ) through q bus lines (B i ).

Fig. 2
Fig. 2

Schematic of the board-level distributed optical bus system. A set of processing elements is located on the center board and accesses information in memory modules on two adjacent boards. The interconnect data-exchange regions contain source and receiver arrays and free-space optics for bidirectional beam transfer between processor and memory boards. An electrical controller (C) routes information to a free-space optical interconnect in the exchange region.

Fig. 3
Fig. 3

Equivalent (A) electrical and (B) optical interconnect components for transmission between two processing elements A and B. TLA and TLB are transmission line segments near PE A and PE B, respectively. PD is a photodiode and Rx is a receiver.

Fig. 4
Fig. 4

Schematic of (a) a single optical bus line connecting the processor board to the memory boards and (b) an expanded view showing the components on the central board transmitting to the adjacent boards through a bidirectional beam splitter.

Fig. 5
Fig. 5

Diagram showing the operation of the bidirectional beam splitter. K1 and K2 are the superimposed grating vectors. The gratings are separated for clarity; in the real grating they overlap. (b) Bragg diagram illustrating the K-vector closure operation for the incident propagation vector k(inc) and the total internal reflection (TIR) propagation vector k(TIR). Here k(left) and k(right) show the two resultant propagation vectors.

Fig. 6
Fig. 6

Sources of misalignment for a free-space optical interconnect, using two diffractive microlenses: (A) lateral component misalignment, (B) longitudinal misalignment, (C) angular misalignment, and (D) chromatic dispersion. Src, source; Det, detector.

Fig. 7
Fig. 7

Change in image distance (d2) with spot size at d2 (d2 is approximately equal to board separation). The wavelength is 800 nm, the source radius is 2.5 μm, and the lens focal length is 1.5 mm.

Fig. 8
Fig. 8

Beam radius at d2 (or the collection lens) as a function of the beam radius at the detector (w o 3). The wavelength is 800 nm, the source radius is 2.5 μm, and the lens focal length is 1.5 mm.

Fig. 9
Fig. 9

Beam radius at the collimation lens as a function of beam radius at the collection lens at a distance d2 away. The wavelength is 800 nm, the source radius is 2.5 μm, and the lens focal length is 1.5 mm.

Fig. 10
Fig. 10

Schematic of substrate-mode input (H1) and output (H2) coupler showing the effect of wavelength variation on lateral beam displacement L T .

Fig. 11
Fig. 11

Diffraction efficiency (DE) versus reconstruction angle for a substrate-mode volume hologram 9.0 μm thick with refractive index of 1.54 recorded at 800 nm, which diffracts a beam at 45° within the substrate.

Fig. 12
Fig. 12

Plot of the diffracted angle within the substrate as a function of angular misalignment for the substrate-mode input coupler described in Fig. 11.

Fig. 13
Fig. 13

Image of (a) the mask array and (b) in a plane 50 mm from the mask array after free-space propagation, illustrating the effect of beam overlap. This mask array was illuminated with a uniform coherent field and has 200-μm-diameter apertures on 400-μm centers.

Fig. 14
Fig. 14

Experimental systems for viewing the fields propagating from the bidirectional beam splitter.

Fig. 15
Fig. 15

Images of (a) the mask array, (b) the forward-propagating beam array, and (c) the backward-propagating beam array recorded with the system illuminated in Fig. 14.

Fig. 16
Fig. 16

Images formed (a) by the 4 × 4 array of 500-μm-diameter, 1.5-mm-focal-length diffractive microlenses, (b) by the 4 × 4 array of 200-μm-diameter apertures on 500-μm centers, and (c) when the aperture array is aligned in front of the microlens array.

Fig. 17
Fig. 17

Aperture array is displaced from the centered position so that beams on the lower-left end overlap the edge of the microlens (a) schematic and (b) image. As long as the beam falls within the aperture of the lens, it is focused to a small spot near the lens center. The use of a microcollection lens reduces the size of the detector required while maintaining a relatively large alignment tolerance.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ t e = δ t LDR 1 + δ t TL + δ t LRX 1 ,
Δ t o = δ t LDR 2 A + δ t TLA + δ t LSDR + δ t LD + δ t OPTMD + δ t PD + δ t ORX + δ t LDR 2 B + δ t TLB + δ t LRX 2 ,
d 1 = f + w o 1 w o 2 ( f 2 - f o 2 ) 1 / 2 , d 2 = f + w o 2 w o 1 ( f 2 - f o 2 ) 1 / 2 ,
w ( z ) = w o 1 [ 1 + ( λ z π w o 1 2 ) 2 ] 1 / 2 ,
w o 3 = λ f π w o 2 .
k x i + k x d = K x ,
Δ L x = D L / 2 - w o 2 ,
d θ d λ = K 4 π n e sin ( ϕ - θ ) ,
θ d = sin - 1 [ λ Λ x n s - sin ( θ i ) n s ] ,
d θ d = d λ Λ x cos θ d n s ,
Δ L T = 2 d ( tan θ 1 - tan θ 2 ) ,

Metrics