Abstract

The efficiency and resolving power of a concave, 2400-groove/mm, blazed diffraction grating that had a Mo/Si multilayer coating were determined. The multilayer coating had a peak reflectance of 55% at 140-Å near normal incidence. The efficiency of the multilayer grating for wavelengths in the 136–139-Å range was 2% near normal incidence. This efficiency was a factor of 150 greater than the efficiency of a sister replica Au-coated grating in the same wavelength region. The resolving power of the multilayer-coated grating in the third order of a V viii transition with a first-order wavelength of 140.451 Å was 9100. Comparisons with the Au-coated grating indicated that the application of the multilayer coating did not affect the resolving power or the blaze angle.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
    [CrossRef]
  2. R. A. M. Keski-Kuha, R. J. Thomas, J. M. Davila, “Rocket flight of a multilayer coated high-density EUV toroidal grating,” in Multilayer and Grazing Incidence X-Ray/EUV Optics, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1546, 614–623 (1991).
  3. J. V. Bixler, T. W. Barbee, D. D. Dietrich, “Performance of multilayer coated concave gratings in the extreme ultraviolet,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 648–654 (1989).
  4. R. A. M. Keski-Kuha, R. J. Thomas, J. S. Gum, C. E. Condor, “Performance of multilayer coated diffraction gratings in the EUV,” Appl. Opt. 29, 4529–4531 (1990).
    [CrossRef] [PubMed]
  5. T. W. Barbee, J. V. Bixler, D. D. Dietrich, “Performance of multilayer coated gratings at near normal incidence in the extreme ultraviolet,” Phys. Scr. 41, 740–744 (1990).
    [CrossRef]
  6. R. J. Thomas, R. A. M. Keski-Kuha, W. M. Neupert, C. E. Condor, J. S. Gum, “Extreme ultraviolet performance of a multilayer coated high density toroidal grating,” Appl. Opt. 30, 2245–2251 (1991).
    [CrossRef] [PubMed]
  7. M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
    [CrossRef] [PubMed]
  8. W. R. Hunter, J. C. Rife, “Higher-order suppression in an on-blaze plane-grating monochromator,” Appl. Opt. 23, 293–299 (1984).
    [CrossRef] [PubMed]
  9. J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
    [CrossRef] [PubMed]
  10. W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
    [CrossRef]
  11. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
  12. T. W. Barbee, J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, J. F. Seely, “Long-term stability of a molybdenum/silicon multilayer structure,” submitted to Appl. Opt.
  13. B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Lab. Rep. LBL-26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1988).
  14. U. Feldman, M. Swartz, L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [CrossRef]
  15. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1, 572–573 (1987).

1993 (1)

1992 (1)

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

1991 (1)

1990 (2)

R. A. M. Keski-Kuha, R. J. Thomas, J. S. Gum, C. E. Condor, “Performance of multilayer coated diffraction gratings in the EUV,” Appl. Opt. 29, 4529–4531 (1990).
[CrossRef] [PubMed]

T. W. Barbee, J. V. Bixler, D. D. Dietrich, “Performance of multilayer coated gratings at near normal incidence in the extreme ultraviolet,” Phys. Scr. 41, 740–744 (1990).
[CrossRef]

1989 (1)

1987 (1)

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1, 572–573 (1987).

1986 (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).

1984 (1)

1982 (1)

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

1967 (1)

U. Feldman, M. Swartz, L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Barbee, T. W.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

T. W. Barbee, J. V. Bixler, D. D. Dietrich, “Performance of multilayer coated gratings at near normal incidence in the extreme ultraviolet,” Phys. Scr. 41, 740–744 (1990).
[CrossRef]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

J. V. Bixler, T. W. Barbee, D. D. Dietrich, “Performance of multilayer coated concave gratings in the extreme ultraviolet,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 648–654 (1989).

T. W. Barbee, J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, J. F. Seely, “Long-term stability of a molybdenum/silicon multilayer structure,” submitted to Appl. Opt.

Bixler, J. V.

T. W. Barbee, J. V. Bixler, D. D. Dietrich, “Performance of multilayer coated gratings at near normal incidence in the extreme ultraviolet,” Phys. Scr. 41, 740–744 (1990).
[CrossRef]

J. V. Bixler, T. W. Barbee, D. D. Dietrich, “Performance of multilayer coated concave gratings in the extreme ultraviolet,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 648–654 (1989).

Boyer, C. N.

Brown, C. M.

Cohen, L.

U. Feldman, M. Swartz, L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Condor, C. E.

Cruddace, R. G.

Davila, J. M.

R. A. M. Keski-Kuha, R. J. Thomas, J. M. Davila, “Rocket flight of a multilayer coated high-density EUV toroidal grating,” in Multilayer and Grazing Incidence X-Ray/EUV Optics, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1546, 614–623 (1991).

Davis, J. C.

B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Lab. Rep. LBL-26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1988).

Dietrich, D. D.

T. W. Barbee, J. V. Bixler, D. D. Dietrich, “Performance of multilayer coated gratings at near normal incidence in the extreme ultraviolet,” Phys. Scr. 41, 740–744 (1990).
[CrossRef]

J. V. Bixler, T. W. Barbee, D. D. Dietrich, “Performance of multilayer coated concave gratings in the extreme ultraviolet,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 648–654 (1989).

Doschek, G. A.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Feldman, U.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

U. Feldman, M. Swartz, L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Gullikson, E. M.

B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Lab. Rep. LBL-26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1988).

Gum, J. S.

Gursky, H.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Henke, B. L.

B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Lab. Rep. LBL-26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1988).

Holland, G. E.

Hunter, W. R.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).

W. R. Hunter, J. C. Rife, “Higher-order suppression in an on-blaze plane-grating monochromator,” Appl. Opt. 23, 293–299 (1984).
[CrossRef] [PubMed]

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

T. W. Barbee, J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, J. F. Seely, “Long-term stability of a molybdenum/silicon multilayer structure,” submitted to Appl. Opt.

Kabler, M. N.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Kelly, R. L.

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1, 572–573 (1987).

Keski-Kuha, R. A. M.

Kirkland, J. P.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Kowalski, M. P.

Mandelbaum, P.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Neupert, W. M.

Perera, R. C. C.

B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Lab. Rep. LBL-26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1988).

Rife, J. C.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).

W. R. Hunter, J. C. Rife, “Higher-order suppression in an on-blaze plane-grating monochromator,” Appl. Opt. 23, 293–299 (1984).
[CrossRef] [PubMed]

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

T. W. Barbee, J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, J. F. Seely, “Long-term stability of a molybdenum/silicon multilayer structure,” submitted to Appl. Opt.

Seely, J. F.

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

T. W. Barbee, J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, J. F. Seely, “Long-term stability of a molybdenum/silicon multilayer structure,” submitted to Appl. Opt.

Swartz, M.

U. Feldman, M. Swartz, L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Thomas, R. J.

Williams, R. T.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Appl. Opt. (5)

Astrophys. J. Suppl. (1)

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1, 572–573 (1987).

Nucl. Instrum. Methods (2)

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).

Phys. Scr. (1)

T. W. Barbee, J. V. Bixler, D. D. Dietrich, “Performance of multilayer coated gratings at near normal incidence in the extreme ultraviolet,” Phys. Scr. 41, 740–744 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Feldman, M. Swartz, L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Other (4)

R. A. M. Keski-Kuha, R. J. Thomas, J. M. Davila, “Rocket flight of a multilayer coated high-density EUV toroidal grating,” in Multilayer and Grazing Incidence X-Ray/EUV Optics, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1546, 614–623 (1991).

J. V. Bixler, T. W. Barbee, D. D. Dietrich, “Performance of multilayer coated concave gratings in the extreme ultraviolet,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 648–654 (1989).

T. W. Barbee, J. C. Rife, W. R. Hunter, M. P. Kowalski, R. G. Cruddace, J. F. Seely, “Long-term stability of a molybdenum/silicon multilayer structure,” submitted to Appl. Opt.

B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Lab. Rep. LBL-26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of a grating that is operating on blaze in the mth outside order, where α is the angle of incidence, β is the angle of diffraction, Φb is the blaze angle, θ is the grazing angle on the facet, d is the groove spacing, H is the groove height, I represents the incident beam, N represents the grating normal, F represents the normal to the grating facets, and 0 represents the zero grating order.

Fig. 2
Fig. 2

Polarization of the incident light (IHIV)/(IH + IV), where IH and IV are the intensities with the electric-field vector in the horizontal and vertical planes, respectively.

Fig. 3
Fig. 3

(a), (b) Measured reflectances of the multilayer witness flat illuminated at angles of incidence of 25° and 10°. The measurements were performed with 90% s-polarized light or 90% p-polarized light. (c), (d) Corresponding calculated reflectances.

Fig. 4
Fig. 4

Efficiency of the multilayer grating at an angle of incidence of α = 14.5° and at wavelengths of 134 Å (diamond data symbols), 136 Å (square symbols), and 140 Å (triangular symbols). The outside grating orders are indicated by −1, −2, −3, and −4.

Fig. 5
Fig. 5

Multilayer grating efficiency at an angle of incidence of α = 14.5° and in the outside orders −1, −2, and −3.

Fig. 6
Fig. 6

Multilayer grating efficiency at a wavelength of 136 Å and for angles of incidence of 14.5° (square data symbols), 12.4° (triangles), and 10.3° (diamonds). The angles are indicated above the second-order peak.

Fig. 7
Fig. 7

Multilayer grating efficiency in the second outside order and for an angle of incidence of 10.3°.

Fig. 8
Fig. 8

Comparison of the wavelengths at which the multilayer coating reflectance (square data symbols and curve) and the multilayer grating efficiency (triangular and diamond data symbols) were maximal.

Fig. 9
Fig. 9

Efficiency of the Au grating at an angle of incidence of 14.5° and in the outside orders −1, −2, and −3.

Fig. 10
Fig. 10

Efficiencies of the multilayer and Au gratings at an angle of incidence of 14.5° and in the outside second order.

Fig. 11
Fig. 11

Efficiencies of the multilayer and Au gratings at an angle of incidence of 14.5°, wavelength of 136 Å, and in the outside orders.

Fig. 12
Fig. 12

(a) Calculated transmittance of the Be filter with l-μm thickness. (b) W spectrum recorded without the filter (1000 sparks of 2 kV). (c) W spectrum recorded with the filter (2500 sparks of 2 kV).

Fig. 13
Fig. 13

(a) Calculated reflectance of the multilayer coating for unpolarized light and at an angle of incidence of 4.5°. (b) W multilayer-grating spectrum recorded without the Be filter in the first inside grating order.

Fig. 14
Fig. 14

W multilayer-grating spectrum recorded with the filter and in (a) the first inside order and (b) the second inside order.

Fig. 15
Fig. 15

V multilayer-grating spectrum in the (a) first, (b) second, and (c) third orders.

Fig. 16
Fig. 16

V viii 140.451-Å transition in the (a) first, (b) second, and (c) third orders.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m λ = d ( sin α sin β ) ,
± m λ = 2 d sin Φ b sin θ ,
θ = π / 2 α ± Φ b = π / 2 β Φ b ,
± m λ = 2 H sin θ ,
n λ = 2 D sin θ ,
D / n = ( d / ± m ) sin Φ b .
sin α = sin γ ( S + R ) / R ,

Metrics