Abstract

A new optical bulk current sensor is presented with Bi12SiO20 as a sensing crystal. Through the use of a mirror in the setup and the reciprocity of the optical activity of Bi12SiO20, the sensor becomes insensitive to intrinsic linear birefringence and birefringence that is due to the enclosure of the crystal. Therefore the sensor is also insensitive to temperature, which affects the total linear birefringence. By making a computer model of the Bi12SiO20 sensor, it was proved that the output signal of the sensor, which has a sinusoidal response, has a maximum relative error of 0.05%, apart from the variation of the Verdet constant, for a temperature change of approximately 100 °C.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sawa, K. Kuosawa, T. Kaminishi, T. Yokota, “Development of optical instrument transformers,” in IEEE/PES Transmission and Distribution Conference (Institute of Electrical and Electronics Engineers, New York, 1989).
  2. T. D. Maffetone, T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Del. 6, 1430–1437 (1991).
    [CrossRef]
  3. I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
    [CrossRef]
  4. T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
    [CrossRef]
  5. E. A. Ulmer, “A high-accuracy optical current transducer for electric power systems,” IEEE Trans. Power Del. 5, 892–898 (1989).
    [CrossRef]
  6. K. S. Lee, “New compensation method for bulk optical sensors with multiple birefringences,” Appl. Opt. 28, 2001–2011 (1989).
    [CrossRef] [PubMed]
  7. A. Feldman, W. S. Brower, D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16, 201–202 (1970).
    [CrossRef]
  8. R. C. Jones, “A new calculus for the treatment of optical systems. Part I-VII,” J. Opt. Soc. Am. 31, 488–503 (1941).
    [CrossRef]
  9. K. S. Lee, “Electrooptic voltage sensor: birefringence effects and compensation methods,” Appl. Opt. 29, 4453-4461 (1990).
    [CrossRef] [PubMed]
  10. P. Bayvel, “Electro-optic coefficient in BSO-type crystals with optical activity measurement and application to sensors,” Sensors Actuators 16, 247–254 (1989).
    [CrossRef]
  11. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  12. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
    [CrossRef] [PubMed]

1991 (2)

T. D. Maffetone, T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Del. 6, 1430–1437 (1991).
[CrossRef]

P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (4)

P. Bayvel, “Electro-optic coefficient in BSO-type crystals with optical activity measurement and application to sensors,” Sensors Actuators 16, 247–254 (1989).
[CrossRef]

I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
[CrossRef]

E. A. Ulmer, “A high-accuracy optical current transducer for electric power systems,” IEEE Trans. Power Del. 5, 892–898 (1989).
[CrossRef]

K. S. Lee, “New compensation method for bulk optical sensors with multiple birefringences,” Appl. Opt. 28, 2001–2011 (1989).
[CrossRef] [PubMed]

1987 (1)

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
[CrossRef]

1970 (1)

A. Feldman, W. S. Brower, D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16, 201–202 (1970).
[CrossRef]

1941 (1)

Bayvel, P.

P. Bayvel, “Electro-optic coefficient in BSO-type crystals with optical activity measurement and application to sensors,” Sensors Actuators 16, 247–254 (1989).
[CrossRef]

Brower, W. S.

A. Feldman, W. S. Brower, D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16, 201–202 (1970).
[CrossRef]

Day, G. W.

Deeter, M. N.

Feldman, A.

A. Feldman, W. S. Brower, D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16, 201–202 (1970).
[CrossRef]

Horowitz, D.

A. Feldman, W. S. Brower, D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16, 201–202 (1970).
[CrossRef]

Hosoe, K.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
[CrossRef]

Jones, R. C.

Kaminishi, T.

T. Sawa, K. Kuosawa, T. Kaminishi, T. Yokota, “Development of optical instrument transformers,” in IEEE/PES Transmission and Distribution Conference (Institute of Electrical and Electronics Engineers, New York, 1989).

Koreman, C. G. A.

I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
[CrossRef]

Kuosawa, K.

T. Sawa, K. Kuosawa, T. Kaminishi, T. Yokota, “Development of optical instrument transformers,” in IEEE/PES Transmission and Distribution Conference (Institute of Electrical and Electronics Engineers, New York, 1989).

Laurensse, I. J.

I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
[CrossRef]

Lee, K. S.

Maffetone, T. D.

T. D. Maffetone, T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Del. 6, 1430–1437 (1991).
[CrossRef]

McClelland, T. M.

T. D. Maffetone, T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Del. 6, 1430–1437 (1991).
[CrossRef]

Milner, T. E.

Mitsui, T.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
[CrossRef]

Miyamoto, S.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
[CrossRef]

Rose, A. H.

Rutgers, W. R.

I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
[CrossRef]

Sawa, T.

T. Sawa, K. Kuosawa, T. Kaminishi, T. Yokota, “Development of optical instrument transformers,” in IEEE/PES Transmission and Distribution Conference (Institute of Electrical and Electronics Engineers, New York, 1989).

Ulmer, E. A.

E. A. Ulmer, “A high-accuracy optical current transducer for electric power systems,” IEEE Trans. Power Del. 5, 892–898 (1989).
[CrossRef]

Usami, H.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
[CrossRef]

van der Wey, A. H.

I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
[CrossRef]

Williams, P. A.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yokota, T.

T. Sawa, K. Kuosawa, T. Kaminishi, T. Yokota, “Development of optical instrument transformers,” in IEEE/PES Transmission and Distribution Conference (Institute of Electrical and Electronics Engineers, New York, 1989).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Feldman, W. S. Brower, D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16, 201–202 (1970).
[CrossRef]

IEEE Trans. Power Del. (3)

T. D. Maffetone, T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Del. 6, 1430–1437 (1991).
[CrossRef]

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Del. PD-2, 87–93 (1987).
[CrossRef]

E. A. Ulmer, “A high-accuracy optical current transducer for electric power systems,” IEEE Trans. Power Del. 5, 892–898 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Sensors Actuators (2)

P. Bayvel, “Electro-optic coefficient in BSO-type crystals with optical activity measurement and application to sensors,” Sensors Actuators 16, 247–254 (1989).
[CrossRef]

I. J. Laurensse, C. G. A. Koreman, W. R. Rutgers, A. H. van der Wey, “Applications for optical current and voltage sensors,” Sensors Actuators 17, 181–186 (1989).
[CrossRef]

Other (2)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

T. Sawa, K. Kuosawa, T. Kaminishi, T. Yokota, “Development of optical instrument transformers,” in IEEE/PES Transmission and Distribution Conference (Institute of Electrical and Electronics Engineers, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of the SOCS.

Fig. 2
Fig. 2

Schematic drawing of the new BSO optical current sensor.

Fig. 3
Fig. 3

Different angles and directions of the optical current sensor.

Fig. 4
Fig. 4

Output signal S of the SOCS as a function of current I and linear birefringence β.

Fig. 5
Fig. 5

Output signal S of tho BSO sensor as a function of current I and linear birefringence β.

Fig. 6
Fig. 6

Relative error of S that is due to temperature-dependent linear birefringence as a function of I and β for the SOCS.

Fig. 7
Fig. 7

Relative error of S that is due to temperature-dependent linear birefringence as a function of I and β for the BSO sensor.

Fig. 8
Fig. 8

Relative errors of S for the BSO sensor as a function of current I and characteristic direction Φ for βmax = 0.01 rad/mm.

Tables (1)

Tables Icon

Table 1 Specifications of the BSO sensor and the SOCS

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P out = R ( α ) M A R ( α ) 1 R ( Φ ) M C ( F , β ) R ( Φ ) 1 P pol ,
R ( α ) M A R ( α ) = ( cos 2 α sin α cos α sin α cos α sin 2 α ) .
R ( Φ ) M C ( F , β ) R ( Φ ) 1 = ( cos p L 2 + j β p sin p L 2 cos 2 Φ j β p sin p L 2 sin 2 Φ + 2 F p sin p L 2 j β p sin p L 2 sin 2 Φ 2 F p sin p L 2 cos p L 2 j β p sin p L 2 cos 2 Φ ) ,
p = ( β 2 + 4 F 2 ) 1 / 2
S ( F , β ) = I A I B I A + I B = [ ( 2 F p ) 2 sin 2 p L 2 cos 2 p L 2 ] cos 2 α + ( 2 F p ) sin p L sin 2 α ( β p ) 2 sin 2 p L 2 cos ( 4 Φ 2 α ) .
S ( F , β ) = I A I B I A + I B = 2 F p sin p L ( β p ) 2 sin 2 p L 2 sin 4 Φ .
S ( F , β ) = sin ( 2 Θ ) = sin ( 2 F L ) .
P out = R ( α ) M A R ( α ) 1 R ( π Φ ) M C ( G F , β ) × R ( π Φ ) 1 R ( Φ ) M C ( G + F , β ) R ( Φ ) 1 P pol .
p = ( β 2 + 4 ( G + F ) 2 ) 1 / 2 , q = ( β 2 + 4 ( G F ) 2 ) 1 / 2 ,
A + B A B = { [ 2 ( G + F ) p cos q L 2 sin p L 2 2 ( G F ) q sin q L 2 cos p L 2 ] 2 ( β 2 4 G 2 + 4 F 2 p q sin q L 2 sin p L 2 cos q L 2 cos p L 2 ) 2 } cos 2 α + 2 [ 2 ( G + F ) p cos q L 2 sin p L 2 2 ( G F ) q sin q L 2 cos p L 2 ] × ( β 2 4 G 2 + 4 F 2 p q sin q L 2 sin p L 2 cos q L 2 cos p L 2 ) sin 2 α + { [ β ( 1 p cos q L 2 sin p L 2 + 1 g sin q L 2 cos p L 2 ) ] 2 ( 2 G 2 β p q sin q L 2 sin p L 2 ) 2 } cos ( 4 Φ + 2 α ) + 2 [ β ( 1 p cos q L 2 sin p L 2 + 1 q sin q L 2 cos p L 2 ) ] × ( 2 G 2 β p q sin q L 2 sin p L 2 ) sin ( 4 Φ + 2 α ) .
S ( F ) = sin ( 4 Φ ) = sin ( 4 F L ) ,
error = S ( F , β ) S ( F , β = 0 ) S ( F , β = 0 ) × 100 % .
F = V ( μ n I l ) ,

Metrics