Abstract

An experimental technique that makes use of the intensity of the interference pattern formed by light that propagates directly from the single-mode fiber tip and light that is reflected by the surface under an oblique angle of incidence is developed to control the tip–surface distance in near-field optical microscopy. It is shown that by using another fiber as a detector with a polished edge placed at the surface near the fiber tip one can determine the tip–surface separation with an accuracy better than 15 nm at distances less than 1 μm. The technique proposed is used to investigate the influence of the shape of the tip in near-field measurements.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
    [CrossRef]
  2. R. Reddick, R. Warmack, T. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  3. D. Courjon, J.-M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [CrossRef] [PubMed]
  4. J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
    [CrossRef]
  5. C. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near-field optical microscopy,” J. Opt. Soc. Am B 9, 298–305 (1992).
    [CrossRef]
  6. L. Salomon, F. De Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am A 8, 2009–2018 (1991).
    [CrossRef]
  7. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  8. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [CrossRef]

1992 (4)

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

C. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near-field optical microscopy,” J. Opt. Soc. Am B 9, 298–305 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

1991 (1)

L. Salomon, F. De Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am A 8, 2009–2018 (1991).
[CrossRef]

1990 (1)

1989 (1)

R. Reddick, R. Warmack, T. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

1986 (1)

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Betzig, E.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Bouju, X.

C. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near-field optical microscopy,” J. Opt. Soc. Am B 9, 298–305 (1992).
[CrossRef]

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Cites, J.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Courjon, D.

De Fornel, F.

L. Salomon, F. De Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am A 8, 2009–2018 (1991).
[CrossRef]

Dürig, U.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Ferrell, T.

R. Reddick, R. Warmack, T. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Ferrell, T. L.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Girard, C.

C. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near-field optical microscopy,” J. Opt. Soc. Am B 9, 298–305 (1992).
[CrossRef]

Goudonnet, J. P.

L. Salomon, F. De Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am A 8, 2009–2018 (1991).
[CrossRef]

Leblanc, S.

Pohl, D. W.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Reddick, R.

R. Reddick, R. Warmack, T. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Reddick, R. C.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Rohner, F.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Salomon, L.

L. Salomon, F. De Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am A 8, 2009–2018 (1991).
[CrossRef]

Sanghadasa, M. F. M.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Sarayeddine, K.

Spajer, M.

Sung, C. C.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Toledo-Crow, R.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Vaez-Iravani, M.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Vigoureux, J.-M.

Warmack, R.

R. Reddick, R. Warmack, T. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Warmack, R. J.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

J. Appl. Phys. (2)

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

J. Opt. Soc. Am A (1)

L. Salomon, F. De Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am A 8, 2009–2018 (1991).
[CrossRef]

J. Opt. Soc. Am B (1)

C. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near-field optical microscopy,” J. Opt. Soc. Am B 9, 298–305 (1992).
[CrossRef]

Phys. Rev. B (1)

R. Reddick, R. Warmack, T. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometrical configuration of the system that was used to investigate the effective tip–surface distance.

Fig. 2
Fig. 2

Different fiber tips (a) with and (b) without laser light irradiated from the tip. The tips were obtained by using different etching times, namely, te = 55 (N1), 65 (N2), and 85 min (N3). The total length of the inserted scale is 50 μm.

Fig. 3
Fig. 3

Square root of the detected power (normalized) as a function of the distance z for different distances L: 1, 0.69; 2, 0.79; 3, 1.089; and 4, 1.38 mm between fiber tip N1 and the detecting fiber. The plots are used to determine the location (z0) of the imaginary source points S.

Fig. 4
Fig. 4

Light power in the detecting fiber measured (solid curve) and calculated (dashed curve) as a function of the tip–surface distance for fiber tips (a) N1 and (b) N2. The separations of the tips from the detecting fiber are L = 0.79 and 0.915 mm, respectively.

Fig. 5
Fig. 5

Intensity of the evanescent field measured as a function of the tip–surface distance by using different fiber tips: ■, N1; ●, N2; ▲, N3. The solid lines were drawn with slopes that correspond to the penetration depths 112, 98, and 85 nm, respectively.

Fig. 6
Fig. 6

Reflected light power measured in the external reflection configuration as a function of the tip–surface distance by using different fiber tips: ●, N2; ▲, N3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( 2 ) = const exp [ i k R 1 ( 2 ) ] R 1 ( 2 ) [ exp ( i π ) ] ,
R 1 ( 2 ) = { L 2 + y 2 + [ z + z 0 ( + ) r ( + ) x ] 2 } 1 / 2 ,
E m = const · exp ( x 2 + y 2 w 2 ) ,
P ( z ) = P 0 { sin 2 [ k r ( z + z 0 ) L ] + [ k 2 r ( z + z 0 ) w 2 2 L 2 ] 2 } ,
P ( z ) P 0 k r ( z + z 0 ) L .

Metrics