Abstract

We describe the modeling and fabrication of waveguide grating couplers with theoretical outcoupling efficiencies into a single diffracted order nearing 100%. Termed single leakage-channel grating couplers (or SLCGC's), these devices utilize a high-reflectivity dielectric stack to reflect the outcoupled beam diffracted toward the substrate and back up into the air region, where it constructively adds with the beam diffracted into the air region. Computer modeling shows that the branching ratio and the leakage rate can be independently controlled, and that the branching ratio is independent of grating depth and grating period. A SLCGC with a branching ratio of 97.1% is fabricated by the use of a combination of vacuum-evaporation and wet-chemical techniques.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, New York, 1975), Chap. 3.
  2. T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  3. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
    [CrossRef]
  4. M. Xu, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
    [CrossRef]
  5. S. Miyanaga, T. Asakura, “Intensity profile of outgoing beams from uniform and linearly tapered grating couplers,” Appl. Opt. 20, 688–695 (1981).
    [CrossRef] [PubMed]
  6. A. Saad, H. Bertoni, T. Tamir, “Beam scattering by nonuniform leaky-wave structures,” Proc. IEEE 62, 1552–1561 (1974).
    [CrossRef]
  7. L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.
  8. K. E. Spaulding, G. M. Morris, “Achromatic waveguide input/output coupler design,” Appl. Opt. 30, 1096–1112 (1991).
    [CrossRef] [PubMed]
  9. M. C. Gupta, L. Li, “Achromatic compensation for integrated optic grating couplers with focused beams,” Appl. Opt. 30, 1461–1463 (1991).
    [CrossRef] [PubMed]
  10. S. T. Peng, T. Tamir, “Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, 405–409 (1974).
    [CrossRef]
  11. T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976).
    [CrossRef]
  12. A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett. 36, 5213–525 (1980).
    [CrossRef]
  13. Q. Gong, “Input and output waveguide grating couplers: Theory, fabrication, and testing,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1990).
  14. H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).
  15. W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Mod. Opt. 38, 363–377 (1991).
    [CrossRef]
  16. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990).
    [CrossRef] [PubMed]
  17. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, “Interference phenomena in waveguides with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
    [CrossRef]
  18. I. A. Avrutsly, A. S. Svakhin, V. A. Sychugov, O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
    [CrossRef]
  19. N. Agrawal, T. C. Strand, P. May, “High directivity waveguide grating couplers for optical storage,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 40.
  20. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
    [CrossRef]
  21. M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings,R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5, pp. 123–157.
    [CrossRef]
  22. Stacks provided by Evaporated Coatings, Inc., 2365 Maryland Road, Willow Grove, Pa. 19090.
  23. L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).
  24. L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).
  25. L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist mask for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

1991 (3)

1990 (2)

1989 (1)

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, “Interference phenomena in waveguides with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

1985 (1)

1981 (2)

S. Miyanaga, T. Asakura, “Intensity profile of outgoing beams from uniform and linearly tapered grating couplers,” Appl. Opt. 20, 688–695 (1981).
[CrossRef] [PubMed]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

1980 (1)

A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett. 36, 5213–525 (1980).
[CrossRef]

1977 (1)

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

1976 (1)

T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976).
[CrossRef]

1974 (2)

A. Saad, H. Bertoni, T. Tamir, “Beam scattering by nonuniform leaky-wave structures,” Proc. IEEE 62, 1552–1561 (1974).
[CrossRef]

S. T. Peng, T. Tamir, “Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, 405–409 (1974).
[CrossRef]

1970 (2)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

Agrawal, N.

N. Agrawal, T. C. Strand, P. May, “High directivity waveguide grating couplers for optical storage,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 40.

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

Aoyagi, T.

T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976).
[CrossRef]

Aoyagi, Y.

T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976).
[CrossRef]

Asakura, T.

Avrutsky, I. A.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, “Interference phenomena in waveguides with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Avrutsly, I. A.

Bates, K. A.

L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.

Bertoni, H.

A. Saad, H. Bertoni, T. Tamir, “Beam scattering by nonuniform leaky-wave structures,” Proc. IEEE 62, 1552–1561 (1974).
[CrossRef]

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

Burke, J. J.

L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.

L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

Craig, M. S.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Driemeier, W.

W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Mod. Opt. 38, 363–377 (1991).
[CrossRef]

W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990).
[CrossRef] [PubMed]

Erwin, J. K.

L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.

Gibson, U. J.

Gong, Q.

Q. Gong, “Input and output waveguide grating couplers: Theory, fabrication, and testing,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1990).

Gruss, A.

A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett. 36, 5213–525 (1980).
[CrossRef]

Gupta, M. C.

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Li, L.

M. C. Gupta, L. Li, “Achromatic compensation for integrated optic grating couplers with focused beams,” Appl. Opt. 30, 1461–1463 (1991).
[CrossRef] [PubMed]

L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.

L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist mask for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

May, P.

N. Agrawal, T. C. Strand, P. May, “High directivity waveguide grating couplers for optical storage,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 40.

McPhedran, R. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

Miyanaga, S.

Morreale, J.

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

Morris, G. M.

Moshrefzadeh, R.

Namba, S.

T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976).
[CrossRef]

Neviere, M.

M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings,R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5, pp. 123–157.
[CrossRef]

O'Kelly, J.

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

Parriaux, O.

Peng, S. T.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

S. T. Peng, T. Tamir, “Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, 405–409 (1974).
[CrossRef]

Roncone, R. L.

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).

L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.

Saad, A.

A. Saad, H. Bertoni, T. Tamir, “Beam scattering by nonuniform leaky-wave structures,” Proc. IEEE 62, 1552–1561 (1974).
[CrossRef]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Seaton, C. T.

M. Xu, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef]

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist mask for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Sosnowski, T. P.

H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Spaulding, K. E.

Stegeman, G. I.

M. Xu, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef]

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist mask for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Strand, T. C.

N. Agrawal, T. C. Strand, P. May, “High directivity waveguide grating couplers for optical storage,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 40.

Svakhin, A. S.

I. A. Avrutsly, A. S. Svakhin, V. A. Sychugov, O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, “Interference phenomena in waveguides with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsly, A. S. Svakhin, V. A. Sychugov, O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, “Interference phenomena in waveguides with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Tam, K. T.

A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett. 36, 5213–525 (1980).
[CrossRef]

Tamir, T.

A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett. 36, 5213–525 (1980).
[CrossRef]

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

A. Saad, H. Bertoni, T. Tamir, “Beam scattering by nonuniform leaky-wave structures,” Proc. IEEE 62, 1552–1561 (1974).
[CrossRef]

S. T. Peng, T. Tamir, “Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, 405–409 (1974).
[CrossRef]

Weisenbach, L.

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).

Xu, M.

M. Xu, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef]

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist mask for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Zelinski, B. J. J.

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).

Appl. Opt. (4)

Appl. Phys. (1)

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Appl. Phys. Lett. (3)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976).
[CrossRef]

A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett. 36, 5213–525 (1980).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

J. Mod. Opt. (2)

W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Mod. Opt. 38, 363–377 (1991).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, “Interference phenomena in waveguides with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Opt. Acta (1)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

Opt. Commun. (1)

S. T. Peng, T. Tamir, “Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, 405–409 (1974).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

A. Saad, H. Bertoni, T. Tamir, “Beam scattering by nonuniform leaky-wave structures,” Proc. IEEE 62, 1552–1561 (1974).
[CrossRef]

Other (9)

L. Li, K. A. Bates, J. K. Erwin, R. L. Roncone, J. J. Burke, “Planar waveguide grating couplers with variable groove depth,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 26.

T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, New York, 1975), Chap. 3.

Q. Gong, “Input and output waveguide grating couplers: Theory, fabrication, and testing,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1990).

N. Agrawal, T. C. Strand, P. May, “High directivity waveguide grating couplers for optical storage,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 40.

M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings,R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5, pp. 123–157.
[CrossRef]

Stacks provided by Evaporated Coatings, Inc., 2365 Maryland Road, Willow Grove, Pa. 19090.

L. Weisenbach, B. J. J. Zelinski, J. O'Kelly, J. Morreale, R. L. Roncone, J. J. Burke, “The influence of processing variables on the optical properties of SiO2-TiO2 planar waveguides,” in Submolecular Glass Chemistry and Physics, P. Bray, N. J. Kreidl, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1590, 50–61 (1991).

L. Weisenbach, B. J. J. Zelinski, R. L. Roncone, L. Li, J. J. Burke, “Wet-chemical fabrication of a single leakage-channel grating coupler,” J. Sol-Gel Sci. Tech. (to be published).

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist mask for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.835, 72–82 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of a typical triangular-groove profile blazed grating.

Fig. 2
Fig. 2

Schematic illustration of a symmetric-groove profile waveguide grating coupler and its basic operation.

Fig. 3
Fig. 3

Ray-optic schematic illustration of a nine-layer stack SLCGC and its principle of operation for achieving high branching ratios.

Fig. 4
Fig. 4

Transverse electric-field intensity profiles for the device illustrated in Fig. 3 and with the parameters given in Table 1 for the TE3 (dashed curve) and TE4 (solid curve) guided modes. The vertical lines represent the boundaries between adjacent layers. The waveguiding layer is centered at 0.0. The horizontal axis is in units of micrometers.

Fig. 5
Fig. 5

Plot of branching ratio (percentage) versus buffer layer thickness (in micrometers) for devices with three layers (dashed curve) and nine layers (solid curve) in the dielectric stack. Devices with five- and seven-layer stacks fall between the two plots. The × indicates the point where the nine-layer stack device falls.

Fig. 6
Fig. 6

Plot of branching ratio (percentage) and leakage rate (in inverse centimeters) versus grating depth (in micrometers) for a nine-layer stack SLCGC. The solid curve is the branching ratio. The dashed curve is the leakage rate. The arrows indicate which vertical axis corresponds to each curve. Note that the branching ratio effectively is independent of both grating depth and leakage rate.

Fig. 7
Fig. 7

Plot of branching ratio (percentage) versus grating period (in micrometers) for a nine-layer stack SLCGC, showing that the branching ratio effectively is independent of the grating period.

Fig. 8
Fig. 8

Plot of measured reflectance versus λ for a nine-layer stack, after being baked at 500 °C for 30 min. Peak reflectivity is 97.5% in the range 500–507 nm.

Tables (2)

Tables Icon

Table 1 Modeling and Fabrication Parameters for the SLCGC Structure of Fig. 3

Tables Icon

Table 2 Computed Effective Indexes for the TE Modes (at λ = 0.5145 μm) of a Nine-Layer Stack SLCGC (shown in Fig. 3) with the Parameters listed in Table 1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n c sin θ c = N eff + ν λ Λ ,
R i = P i i P i × 100 % .
R air = I air I air + I sub × 100 % ,

Metrics