Abstract

The spectral superbroadening behavior of forward coherent radiation from a 10-cm-long liquid-filled cell is investigated by using an ultrashort (∼0.5 ps) and intense (∼10 GW/cm2) laser pulse as the pump source. Five different transparent liquids (heavy water, water, carbon tetrachloride, benzene, and carbon disulfide) have been studied with a special experimental design that can distinguish the predominant contributions from the various possible mechanisms. Under the same pump condition, a very wide and symmetrical superbroadening (continuum) is observed on both the Stokes and the anti-Stokes side of the pump line for non-Kerr-type liquids such as heavy water and water, whereas only a red-shifted spectral broadening can be observed on the Stokes side for Kerr-type liquids such as carbon disulfide and benzene. For an explanation of the latter behavior, the dominant contributions from stimulated Rayleigh–Kerr and Raman–Kerr scattering are proposed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989), Chaps. 1, 2, and 7.
  2. R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  3. R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [Crossref]
  4. N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).
  5. R. R. Alfano, L. L. Hope, S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
    [Crossref]
  6. G. E. Busch, R. P. Jones, P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–184 (1973).
    [Crossref]
  7. C. A. G. O. Varma, P. M. Rentzepis, “Time resolution and characteristics of a broadband picosecond continuum and light gate,” J. Chem. Phys. 58, 5237–5246 (1973).
    [Crossref]
  8. D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
    [Crossref]
  9. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [Crossref] [PubMed]
  10. P. B. Corkum, P. P. Ho, R. R. Alfano, J. T. Manassah, “Generation of intrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett. 10, 624–626 (1985).
    [Crossref] [PubMed]
  11. F. Shimizu, “Frequency broadening in liquid by a short light pulse,” Phys. Rev. Lett. 19, 1097–1099 (1967).
    [Crossref]
  12. T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
    [Crossref]
  13. Y. R. Shen, M. M. T. Loy, “Theoretical interpretation of small-scale filaments of the light originating from moving focal spots,” Phys. Rev. A. 3, 2099–2105 (1971).
    [Crossref]
  14. G. S. He, P. N. Prasad, “Stimulated Rayleigh–Kerr and Raman–Kerr scattering in a liquid-core hollow fiber system,” Fiber Integr. Opt. 9, 11–26 (1990).
    [Crossref]
  15. S. Saikan, “Transient stimulated Raman scattering in binary mixed liquids,” Opt. Commun. 6, 77–80 (1972).
    [Crossref]
  16. G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
    [Crossref] [PubMed]
  17. G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber system,” J. Chem. Phys. 93, 7647–7655 (1990).
    [Crossref]
  18. G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
    [Crossref]
  19. G. S. He, G. C. Xu, Y. Pang, P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow fiber system,” J. Opt. Soc. Am. B 8, 1907–1913 (1991).
    [Crossref]
  20. G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
    [Crossref]

1992 (1)

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[Crossref]

1991 (1)

1990 (3)

G. S. He, P. N. Prasad, “Stimulated Rayleigh–Kerr and Raman–Kerr scattering in a liquid-core hollow fiber system,” Fiber Integr. Opt. 9, 11–26 (1990).
[Crossref]

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref] [PubMed]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber system,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

1989 (1)

G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
[Crossref]

1985 (1)

1983 (1)

1976 (1)

D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
[Crossref]

1973 (2)

G. E. Busch, R. P. Jones, P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–184 (1973).
[Crossref]

C. A. G. O. Varma, P. M. Rentzepis, “Time resolution and characteristics of a broadband picosecond continuum and light gate,” J. Chem. Phys. 58, 5237–5246 (1973).
[Crossref]

1972 (3)

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

R. R. Alfano, L. L. Hope, S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[Crossref]

S. Saikan, “Transient stimulated Raman scattering in binary mixed liquids,” Opt. Commun. 6, 77–80 (1972).
[Crossref]

1971 (1)

Y. R. Shen, M. M. T. Loy, “Theoretical interpretation of small-scale filaments of the light originating from moving focal spots,” Phys. Rev. A. 3, 2099–2105 (1971).
[Crossref]

1970 (2)

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

1969 (1)

T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

1967 (1)

F. Shimizu, “Frequency broadening in liquid by a short light pulse,” Phys. Rev. Lett. 19, 1097–1099 (1967).
[Crossref]

Alfano, R. R.

P. B. Corkum, P. P. Ho, R. R. Alfano, J. T. Manassah, “Generation of intrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett. 10, 624–626 (1985).
[Crossref] [PubMed]

R. R. Alfano, L. L. Hope, S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

Burzynski, R.

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber system,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
[Crossref]

Busch, G. E.

G. E. Busch, R. P. Jones, P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–184 (1973).
[Crossref]

Corkum, P. B.

Fork, R. L.

Gustafson, T. K.

T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

He, G. S.

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[Crossref]

G. S. He, G. C. Xu, Y. Pang, P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow fiber system,” J. Opt. Soc. Am. B 8, 1907–1913 (1991).
[Crossref]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber system,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

G. S. He, P. N. Prasad, “Stimulated Rayleigh–Kerr and Raman–Kerr scattering in a liquid-core hollow fiber system,” Fiber Integr. Opt. 9, 11–26 (1990).
[Crossref]

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref] [PubMed]

G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
[Crossref]

Hirlimann, C.

Ho, P. P.

Hope, L. L.

R. R. Alfano, L. L. Hope, S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[Crossref]

Il'ichev, N. N.

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Jones, R. P.

G. E. Busch, R. P. Jones, P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–184 (1973).
[Crossref]

Kelley, P. L.

T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Koroblin, V. V.

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Korshunov, V. A.

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Lifsitz, J. R.

T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Loy, M. M. T.

Y. R. Shen, M. M. T. Loy, “Theoretical interpretation of small-scale filaments of the light originating from moving focal spots,” Phys. Rev. A. 3, 2099–2105 (1971).
[Crossref]

Malyntin, A. A.

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Manassah, J. T.

Okroashvili, T. G.

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Paining, P. P.

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Pang, Y.

Prasad, P. N.

G. S. He, G. C. Xu, Y. Pang, P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow fiber system,” J. Opt. Soc. Am. B 8, 1907–1913 (1991).
[Crossref]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber system,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref] [PubMed]

G. S. He, P. N. Prasad, “Stimulated Rayleigh–Kerr and Raman–Kerr scattering in a liquid-core hollow fiber system,” Fiber Integr. Opt. 9, 11–26 (1990).
[Crossref]

G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
[Crossref]

Rentzepis, P. M.

G. E. Busch, R. P. Jones, P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–184 (1973).
[Crossref]

C. A. G. O. Varma, P. M. Rentzepis, “Time resolution and characteristics of a broadband picosecond continuum and light gate,” J. Chem. Phys. 58, 5237–5246 (1973).
[Crossref]

Saikan, S.

S. Saikan, “Transient stimulated Raman scattering in binary mixed liquids,” Opt. Commun. 6, 77–80 (1972).
[Crossref]

Shank, C. V.

Shapiro, S. L.

R. R. Alfano, L. L. Hope, S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Sharma, D. K.

D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
[Crossref]

Shen, Y. R.

Y. R. Shen, M. M. T. Loy, “Theoretical interpretation of small-scale filaments of the light originating from moving focal spots,” Phys. Rev. A. 3, 2099–2105 (1971).
[Crossref]

Shimizu, F.

F. Shimizu, “Frequency broadening in liquid by a short light pulse,” Phys. Rev. Lett. 19, 1097–1099 (1967).
[Crossref]

Sugamori, S. E.

D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
[Crossref]

Taran, J. P.

T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Tomlinson, W. J.

Varma, C. A. G. O.

C. A. G. O. Varma, P. M. Rentzepis, “Time resolution and characteristics of a broadband picosecond continuum and light gate,” J. Chem. Phys. 58, 5237–5246 (1973).
[Crossref]

Wiliams, D. F.

D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
[Crossref]

Xu, G. C.

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[Crossref]

G. S. He, G. C. Xu, Y. Pang, P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow fiber system,” J. Opt. Soc. Am. B 8, 1907–1913 (1991).
[Crossref]

G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
[Crossref]

Yen, R.

Yip, R. W.

D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
[Crossref]

Chem. Phys. Lett. (2)

D. K. Sharma, R. W. Yip, D. F. Wiliams, S. E. Sugamori, “Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μm pulse,” Chem. Phys. Lett. 41, 460–465 (1976).
[Crossref]

G. E. Busch, R. P. Jones, P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–184 (1973).
[Crossref]

Fiber Integr. Opt. (1)

G. S. He, P. N. Prasad, “Stimulated Rayleigh–Kerr and Raman–Kerr scattering in a liquid-core hollow fiber system,” Fiber Integr. Opt. 9, 11–26 (1990).
[Crossref]

IEEE J. Quantum Electron. (1)

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[Crossref]

J. Chem. Phys. (2)

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber system,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

C. A. G. O. Varma, P. M. Rentzepis, “Time resolution and characteristics of a broadband picosecond continuum and light gate,” J. Chem. Phys. 58, 5237–5246 (1973).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

N. N. Il'ichev, V. V. Koroblin, V. A. Korshunov, A. A. Malyntin, T. G. Okroashvili, P. P. Paining, “Superbroadening of the spectrum of ultrashort pulses in liquids and glasses,” JETP Lett. 15, 133–135 (1972).

Opt. Commun. (2)

G. S. He, G. C. Xu, R. Burzynski, P. N. Prasad, “Stimulated amplification of a broad-band optical signal through a benzene-core fiber system pumped by ultra-short laser pulses,” Opt. Commun. 72, 397–400 (1989).
[Crossref]

S. Saikan, “Transient stimulated Raman scattering in binary mixed liquids,” Opt. Commun. 6, 77–80 (1972).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (1)

T. K. Gustafson, J. P. Taran, J. R. Lifsitz, P. L. Kelley, “Self-modulation, self-steepening and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Phys. Rev. A (2)

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref] [PubMed]

R. R. Alfano, L. L. Hope, S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[Crossref]

Phys. Rev. A. (1)

Y. R. Shen, M. M. T. Loy, “Theoretical interpretation of small-scale filaments of the light originating from moving focal spots,” Phys. Rev. A. 3, 2099–2105 (1971).
[Crossref]

Phys. Rev. Lett. (3)

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

F. Shimizu, “Frequency broadening in liquid by a short light pulse,” Phys. Rev. Lett. 19, 1097–1099 (1967).
[Crossref]

Other (1)

R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989), Chaps. 1, 2, and 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for observing the collinear and noncollinear coherent radiation from a liquid cell pumped by an ultrashort pulsed laser source.

Fig. 2
Fig. 2

Angle-dependent structure of continuum from heavy water at pump intensity I0 ≈ 10 GW/cm2: (a) noncollinear emission, (b) collinear emission, and (c) overall coherent emission.

Fig. 3
Fig. 3

Angle-dependent structure of continuum spectra of water at pump intensity I0 ≈ 10 GW/cm2: (a) noncollinear emission, (b) collinear emission, and (c) overall coherent emission.

Fig. 4
Fig. 4

Angle-dependent structure of superbroadened spectra of carbon tetrachloride at pump intensity I0 ≈ 10 GW/cm2: (a) noncollinear emission, (b) collinear emission, and (c) overall coherent emission.

Fig. 5
Fig. 5

Angle-dependent structure of superbroadened spectra of benzene at pump intensity I0 ≈ 10 GW/cm2: (a) noncollinear emission, (b) collinear emission, and (c) overall coherent emission.

Fig. 6
Fig. 6

Angle-dependent structure of superbroadened spectra of carbon disulfide at pump intensity I0 ≈ 10 GW/cm2: (a) noncollinear emission, (b) collinear emission, and (c) overall coherent emission.

Metrics