Abstract

A single-transmission holographic optical element capable of broadband five-channel demultiplexing in multimode fiber is described. A holographic optical element demultiplexer combines a hologram on dichromated gelatin with a computer-generated hologram. A design of the demultiplexer with a nonspherical wave front based on ray tracing and the optimization technique perfectly permits five cross-talk isolations by reducing the aberrations of multiple focused spots caused by a recording-readout wavelength shift. Such a system has a channel separation of 300 μm (20 nm in wavelength difference) between adjacent fibers in an operating laser diode wavelength region of 0.8–0.88 μm. Experiments demonstrating the feasibility of this demultiplexer with a 780-nm laser diode source are presented.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
    [CrossRef] [PubMed]
  2. H. W. Yen, H. R. Friedrich, R. J. Morrison, G. L. Tangonan, “Planar Rowland spectrometer for fiber-optic wavelength demultiplexer,” Opt. Lett. 6, 639–641 (1981).
    [CrossRef] [PubMed]
  3. Y. Fujii, J. Minowa, “Optical demultiplexer using a silicon concave diffraction grating,” Appl. Opt. 22, 974–978 (1983).
    [CrossRef] [PubMed]
  4. V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
    [CrossRef]
  5. D. J. McCartney, D. B. Bayne, “Position-tunable holographic filters in dichromated gelatin for use in single-mode-fiber demultiplexers,” Opt. Lett. 10, 303–305 (1985).
    [CrossRef] [PubMed]
  6. S. S. Duncan, J. A. McQuoid, D. J. McCartney, “Holographic filters in dichromated gelatin position tuned over the near-infrared region,” Opt. Eng. 24, 781–785 (1985).
  7. C. F. Buhrer, “Four waveplate dual tuner for birefringent filters and multiplexers,” Appl. Opt. 26, 3628–3632 (1987).
    [CrossRef] [PubMed]
  8. Y. Fujii, “Tunable wavelength multi/demultiplexer using a variable retardation phase plate,” Appl. Opt. 29, 3465–3467 (1990).
    [CrossRef] [PubMed]
  9. J. L. Horner, J. E. Ludman, “Single holographic element wavelength demultiplexer,” Appl. Opt. 20, 1845–1847 (1981).
    [CrossRef] [PubMed]
  10. T. Kubota, T. Ose, “Lippmann color holograms recorded in methylene-blue-sensitized dichromated gelatin,” Opt. Lett. 4, 289–291 (1979).
    [CrossRef] [PubMed]
  11. R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric optical elements,” Opt. Eng. 21, 133–140 (1982).
  12. A. K. Rigler, R. J. Pegis, “Optimization methods in optics,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, Berlin, 1980).
    [CrossRef]
  13. W.-H. Lee, “Computer-generated holograms: techniques and applications,” Prog. Opt. 16, 121–232 (1978).
  14. E. B. Champagne, “Nonparaxial imaging, magnification, and aberration properties in holography,” J. Opt. Soc. Am. 57, 51–55 (1967).
    [CrossRef]
  15. T. Kubota, “Control of the reconstruction wavelength of Lippmann holograms recorded in dichromated gelatin,” Appl. Opt. 28, 1845–1849 (1989).
    [CrossRef] [PubMed]
  16. S. A. Zager, A. M. Weber, “Display holograms in Du Pont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1461, 58–67 (1991).

1990 (1)

1989 (1)

1987 (1)

1985 (3)

V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
[CrossRef]

S. S. Duncan, J. A. McQuoid, D. J. McCartney, “Holographic filters in dichromated gelatin position tuned over the near-infrared region,” Opt. Eng. 24, 781–785 (1985).

D. J. McCartney, D. B. Bayne, “Position-tunable holographic filters in dichromated gelatin for use in single-mode-fiber demultiplexers,” Opt. Lett. 10, 303–305 (1985).
[CrossRef] [PubMed]

1983 (1)

1982 (1)

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric optical elements,” Opt. Eng. 21, 133–140 (1982).

1981 (2)

1979 (1)

1978 (1)

W.-H. Lee, “Computer-generated holograms: techniques and applications,” Prog. Opt. 16, 121–232 (1978).

1977 (1)

1967 (1)

Bayne, D. B.

Buhrer, C. F.

Champagne, E. B.

Duncan, S. S.

S. S. Duncan, J. A. McQuoid, D. J. McCartney, “Holographic filters in dichromated gelatin position tuned over the near-infrared region,” Opt. Eng. 24, 781–785 (1985).

Fairchild, R. C.

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric optical elements,” Opt. Eng. 21, 133–140 (1982).

Fienup, J. R.

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric optical elements,” Opt. Eng. 21, 133–140 (1982).

Friedrich, H. R.

Fujii, Y.

Horner, J. L.

Kubota, T.

Lee, W.-H.

W.-H. Lee, “Computer-generated holograms: techniques and applications,” Prog. Opt. 16, 121–232 (1978).

Ludman, J. E.

McCartney, D. J.

D. J. McCartney, D. B. Bayne, “Position-tunable holographic filters in dichromated gelatin for use in single-mode-fiber demultiplexers,” Opt. Lett. 10, 303–305 (1985).
[CrossRef] [PubMed]

S. S. Duncan, J. A. McQuoid, D. J. McCartney, “Holographic filters in dichromated gelatin position tuned over the near-infrared region,” Opt. Eng. 24, 781–785 (1985).

McQuoid, J. A.

S. S. Duncan, J. A. McQuoid, D. J. McCartney, “Holographic filters in dichromated gelatin position tuned over the near-infrared region,” Opt. Eng. 24, 781–785 (1985).

Minowa, J.

Morrison, R. J.

Ose, T.

Pegis, R. J.

A. K. Rigler, R. J. Pegis, “Optimization methods in optics,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, Berlin, 1980).
[CrossRef]

Righini, G. C.

V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
[CrossRef]

Rigler, A. K.

A. K. Rigler, R. J. Pegis, “Optimization methods in optics,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, Berlin, 1980).
[CrossRef]

Russo, V.

V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
[CrossRef]

Sottini, S.

V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
[CrossRef]

Tangonan, G. L.

Tomlinson, W. J.

Trigigari, S.

V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
[CrossRef]

Weber, A. M.

S. A. Zager, A. M. Weber, “Display holograms in Du Pont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1461, 58–67 (1991).

Yen, H. W.

Zager, S. A.

S. A. Zager, A. M. Weber, “Display holograms in Du Pont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1461, 58–67 (1991).

Appl. Opt. (6)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

V. Russo, S. Sottini, G. C. Righini, S. Trigigari, “Demultiplexing and tapping device using a spherical geodesic lens,” Opt. Commun. 54, 87–90 (1985).
[CrossRef]

Opt. Eng. (2)

S. S. Duncan, J. A. McQuoid, D. J. McCartney, “Holographic filters in dichromated gelatin position tuned over the near-infrared region,” Opt. Eng. 24, 781–785 (1985).

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric optical elements,” Opt. Eng. 21, 133–140 (1982).

Opt. Lett. (3)

Prog. Opt. (1)

W.-H. Lee, “Computer-generated holograms: techniques and applications,” Prog. Opt. 16, 121–232 (1978).

Other (2)

S. A. Zager, A. M. Weber, “Display holograms in Du Pont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1461, 58–67 (1991).

A. K. Rigler, R. J. Pegis, “Optimization methods in optics,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, Berlin, 1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of a HOE demultiplexer. The solid lines correspond to the case of a transmission-type hologram, and the dashed lines correspond to a reflection-type one.

Fig. 2
Fig. 2

Recording geometry (a) for an optimized HOE demultiplexer with a nonspherical object wave front. The multiplexed signal is diffracted and refocused by the hologram (b) into output fibers.

Fig. 3
Fig. 3

Schematic illustration of ray input in the HOE demultiplexer and ray-traced spot in the output-fiber plane while the reconstructing wavelengths are varied during optimization.

Fig. 4
Fig. 4

Optimized coefficients of perturbed wave at the margin (X = 7.5 mm, Y = 7.5 mm) of the HOE with λ o = 514.5 nm and a three-dimensional plot of the nonspherical wave front.

Fig. 5
Fig. 5

Plots of the mean-square spot radius σ j 2 versus image coordinate and reconstructing wavelengths. The curve marked by the asterisk corresponds to an optimized HOE demultiplexer, and the curve marked by the open circle corresponds to a conventional one.

Fig. 6
Fig. 6

Spot diagrams corresponding to (a) a conventional HOE demultiplexer and to (b) an optimized one, each marked by closed and open circles. The core and fiber diameters of the inner and outer circles are 0.2 mm and 0.3 mm, respectively.

Fig. 7
Fig. 7

Demultiplexer geometric power P c j in the unit of number of rays as a function of wavelength from 800 to 880 nm that corresponds to output-fiber position: (a) a conventional and (b) optimized HOE demultiplexers.

Fig. 8
Fig. 8

Geometry for making a corrected HOE demultiplexer recorded on a DCG plate. The diffracted wave from the CGH with the nonspherical wave as depicted in Fig. 4 interferes with the reference wave to form a demultiplexer. M’s, mirrors; L’s, lenses; MO’s, microscope objectives; BS, beam splitter.

Fig. 9
Fig. 9

Readout geometry through a HOE demultiplexer with a reconstruction angle θ c in operation. The aberration capability is checked with a 780-nm laser diode on the front end of fiber and a far field from the rear end of it.

Fig. 10
Fig. 10

Magnified focused spots in the front-end plane of an output fiber and corresponding far-field irradiance patterns from (b) the optimized HOE demultiplexer with those from (a) the conventional HOE. A significant improvement in the focused spots can be seen.

Tables (1)

Tables Icon

Table 1 System Conditions of a HOE Demultiplexer

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

1 R i = 1 R c - μ ( 1 R o - 1 R r ) ,
sin θ i = sin θ c - μ ( sin θ o - sin θ r ) ,
sin Δ θ i = - sin θ c - λ χ + Δ λ λ o sin θ r = Δ λ λ χ sin θ c .
Δ x = R i Δ θ i = R i Δ λ λ χ sin θ c
b ( X q p R q 3 ) = X c p R c 3 - μ ( X o p R o 3 - X r p R r 3 ) - X i p R i 3 ,
ϕ i = ϕ c - μ [ ( ϕ o + ϕ G ) - ϕ r ] .
ϕ G = C 20 X 2 + C 40 X 4 + C 60 X 6 + C 80 X 8 + C 02 Y 2 + C 04 Y 4 + C 06 Y 6 C 08 Y 8 + C 22 X 2 Y 2 + C 44 X 4 Y 4 ,
( l i n i ) = [ cos Δ θ i sin Δ θ i - sin Δ θ i cos Δ θ i ] × [ ϕ i / X [ 1 - ( ϕ i / X ) 2 - ( ϕ i / Y ) 2 ] 1 / 2 ] , m i = ϕ i / Y ,
L = ( R i + X sin Δ θ i ) n i .
u k j = X k j cos Δ θ i + l i L ,
v k j = Y k j + m i L ,
Γ = 1 5 j = 1 5 σ j 2 .
σ j 2 = 1 N k = 1 N [ ( u k j - u k j ) 2 + ( v k j - v k j ) 2 ] ,
P g = I g j × ( r k j ) 2 = ( number of rays ) .
P c j = I g j × l 2 = ( number of rays ) × l 2 ( r k j ) 2 ,

Metrics