Abstract

The effect of varying the illumination of the target scene on the performance of classical, binary, and fringe-adjusted joint-transform correlators is investigated. Simulation results show that the fringe-adjusted joint-transform correlator yields better correlation output than the classical or the binary joint-transform correlator under all illumination conditions of the target scene.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248 (1966).
    [CrossRef] [PubMed]
  2. F. T. S. Yu, X. J. Lu, “A real-time programmable joint-transform correlator,” Opt. Commun. 52, 10–16 (1984).
    [CrossRef]
  3. A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
    [CrossRef]
  4. F. T. S. Yu, C. Zhang, Y. Jin, D. A. Gregory, “Nonconventional joint-transform correlator,” Opt. Lett. 14, 922–924 (1989).
    [CrossRef] [PubMed]
  5. M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991).
    [CrossRef]
  6. B. Javidi, C. Kuo, “Joint-transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
    [CrossRef] [PubMed]
  7. D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264(1991).
    [CrossRef]
  8. M. S. Alam, M. A. Karim, “Fringe-adjusted joint-transform optical correlation,” Appl. Opt. (to be published).
  9. D. A. Gregory, J. A. Loudin, “Joint-transform correlator limitations,” in Optical Pattern Recognition, H. Liu, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1053, 198–207 (1989).
  10. D. A. Gregory, J. A. Loudin, F. T. S. Yu, “Illumination dependence of the joint-transform correlation,” Appl. Opt. 28, 3288–3290 (1989).
    [CrossRef] [PubMed]
  11. S. Jutamalia, G. M. Storti, D. A. Greogry, J. C. Kirsch, “Illumination-independent high-efficiency joint-transform correlation,” Appl. Opt. 30, 4173–4175 (1991).
    [CrossRef]
  12. F. T. S. Yu, S. Jutamalia, T. W. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).
    [CrossRef] [PubMed]
  13. M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 1992), pp. 46–52.
  14. A. A. S. Awwal, M. A. Karim, S. R. Jahan, “Improved correlation discrimination using an amplitude modulated phase-only filter,” Appl. Opt. 29, 233–236 (1990).
    [CrossRef] [PubMed]

1991 (3)

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991).
[CrossRef]

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264(1991).
[CrossRef]

S. Jutamalia, G. M. Storti, D. A. Greogry, J. C. Kirsch, “Illumination-independent high-efficiency joint-transform correlation,” Appl. Opt. 30, 4173–4175 (1991).
[CrossRef]

1990 (1)

1989 (2)

1988 (1)

1987 (1)

1984 (1)

F. T. S. Yu, X. J. Lu, “A real-time programmable joint-transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

1966 (1)

1964 (1)

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Alam, M. S.

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991).
[CrossRef]

M. S. Alam, M. A. Karim, “Fringe-adjusted joint-transform optical correlation,” Appl. Opt. (to be published).

Awwal, A. A. S.

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991).
[CrossRef]

A. A. S. Awwal, M. A. Karim, S. R. Jahan, “Improved correlation discrimination using an amplitude modulated phase-only filter,” Appl. Opt. 29, 233–236 (1990).
[CrossRef] [PubMed]

M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 1992), pp. 46–52.

Feng, D.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264(1991).
[CrossRef]

Goodman, J. W.

Gregory, D. A.

Greogry, D. A.

Jahan, S. R.

Javidi, B.

Jin, Y.

Jutamalia, S.

Karim, M. A.

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991).
[CrossRef]

A. A. S. Awwal, M. A. Karim, S. R. Jahan, “Improved correlation discrimination using an amplitude modulated phase-only filter,” Appl. Opt. 29, 233–236 (1990).
[CrossRef] [PubMed]

M. S. Alam, M. A. Karim, “Fringe-adjusted joint-transform optical correlation,” Appl. Opt. (to be published).

M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 1992), pp. 46–52.

Kirsch, J. C.

Kuo, C.

Lin, T. W.

Loudin, J. A.

D. A. Gregory, J. A. Loudin, F. T. S. Yu, “Illumination dependence of the joint-transform correlation,” Appl. Opt. 28, 3288–3290 (1989).
[CrossRef] [PubMed]

D. A. Gregory, J. A. Loudin, “Joint-transform correlator limitations,” in Optical Pattern Recognition, H. Liu, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1053, 198–207 (1989).

Lu, X. J.

F. T. S. Yu, X. J. Lu, “A real-time programmable joint-transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

Storti, G. M.

VanderLugt, A. B.

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Weaver, C. S.

Xia, S.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264(1991).
[CrossRef]

Yu, F. T. S.

Zhang, C.

Zhao, H.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264(1991).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Inf. Theory (1)

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Microwave Opt. Tech. Lett. (1)

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991).
[CrossRef]

Opt. Commun. (2)

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264(1991).
[CrossRef]

F. T. S. Yu, X. J. Lu, “A real-time programmable joint-transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

Opt. Lett. (1)

Other (3)

M. S. Alam, M. A. Karim, “Fringe-adjusted joint-transform optical correlation,” Appl. Opt. (to be published).

D. A. Gregory, J. A. Loudin, “Joint-transform correlator limitations,” in Optical Pattern Recognition, H. Liu, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1053, 198–207 (1989).

M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 1992), pp. 46–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Joint-transform correlator architecture: BS, beam splitter; SLM’s, spatial light modulators.

Fig. 2
Fig. 2

Test images: (a) target A (same as reference), (b) target B, (c) target C.

Fig. 3
Fig. 3

Correlation output with the classical JTC for (a) target A, (b) target B, and (c) target C.

Fig. 4
Fig. 4

Same as Fig. 3 but for the binary JTC.

Fig. 5
Fig. 5

Same as Fig. 3 but for the fringe-adjusted JTC.

Tables (1)

Tables Icon

Table 1 Joint-Transform Correlation Results

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ) = r ( x , y + y ) + t ( x , y - y ) .
F ( u , v ) 2 = R ( u , v ) 2 + T ( u , v ) 2 + 2 R ( u , v ) T ( u , v ) × cos [ ϕ r ( u , v ) - ϕ t ( u , v ) + 2 v y ] ,
F ( u , v ) 2 = { + 1 for F ( u , v ) 2 T f - 1 otherwise ,
H faf ( u , v ) = B ( u , v ) A ( u , v ) + R ( u , v ) 2 ,
G ( u , v ) = H faf ( u , v ) F ( u , v ) 2 = [ B ( u , v ) A ( u , v ) + R ( u , v ) 2 ] { R ( u , v ) 2 + T ( u , v ) 2 + 2 R ( u , v ) T ( u , v ) × cos [ ϕ r ( u , v ) - ϕ t ( u , v ) + 2 v y ] } .
H faf ( u , v ) 1 R ( u , v ) 2 .
G ( u , v ) 2 { 1 + cos [ ϕ r ( u , v ) - ϕ t ( u , v ) + 2 v y ] } .

Metrics