Abstract

Measurements of the birefringence spectra for cadmium sulfide and cadmium selenide from 2.5 to 16.5 μm obtained with a rotating sample spectropolarimeter are presented. Because of the similarity in the birefringence spectra for cadmium sulfide and cadmium selenide, a highly achromatic IR retarder can be constructed from a combination of these materials. The ordinary and extraordinary refractive indices for cadmium sulfide are estimated in the region from 10.6 to 15 μm and for cadmium selenide from 10.6 to 16.5 μm by combining these birefringence data with an extrapolation of previous dispersion relations.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weil, D. Neshmit, “Temperature coefficients of the indices of refraction and of the birefringence in cadmium sulphide,” J. Opt. Soc. Am. 67, 190–195 (1977).
    [Crossref]
  2. S. J. Czyzak, R. C. Crane, T. M. Bieniewski, “Dichroism in essentially pure and activated cadmium sulfide single crystals,” J. Opt. Soc. Am. 49, 485–488 (1959).
    [Crossref]
  3. T. M. Bieniewski, S. J. Czyzak, “Refractive indices of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am. 53, 496–497 (1963).
    [Crossref]
  4. D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, (1993).
    [Crossref] [PubMed]
  5. D. B. Chenault, R. A. Chipman, K. M. Johnson, D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17, 447–449 (1992).
    [Crossref] [PubMed]
  6. R. M. A. Azzam, “NIRSE: normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20, 405–408 (1977).
    [Crossref]
  7. D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. A 7, 693–700 (1990).
    [Crossref]
  8. Data sheet, Jendel Scientific, Corte Madera, Calif.
  9. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305–307 (1976).
    [Crossref]
  10. S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).
  11. S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).
  12. D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
  13. SigmaPlot, Jandel Scientific, (1991).
  14. G. C. Bhar, G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979).
    [Crossref]
  15. B. Jensen, A. Torabi, “Refractive index of hexagonal II–VI compounds CdSe, CdS, and CdSexS1-x,” J. Opt. Soc. Am. B 3, 857–863 (1986).
    [Crossref]
  16. R. A. Chipman, D. B. Chenault, “Infrared achromatic retarder,” U.S. patent4,961,634 (9October1990).

1993 (1)

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, (1993).
[Crossref] [PubMed]

1992 (1)

1990 (1)

1989 (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

1986 (1)

1979 (1)

1977 (2)

1976 (1)

1972 (2)

S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

1963 (1)

1959 (1)

Abagyan, S. A.

S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

Azzam, R. M. A.

R. M. A. Azzam, “NIRSE: normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20, 405–408 (1977).
[Crossref]

Bhar, G. C.

Bieniewski, T. M.

Chenault, D. B.

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, (1993).
[Crossref] [PubMed]

D. B. Chenault, R. A. Chipman, K. M. Johnson, D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17, 447–449 (1992).
[Crossref] [PubMed]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

R. A. Chipman, D. B. Chenault, “Infrared achromatic retarder,” U.S. patent4,961,634 (9October1990).

Chipman, R. A.

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, (1993).
[Crossref] [PubMed]

D. B. Chenault, R. A. Chipman, K. M. Johnson, D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17, 447–449 (1992).
[Crossref] [PubMed]

D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. A 7, 693–700 (1990).
[Crossref]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

R. A. Chipman, D. B. Chenault, “Infrared achromatic retarder,” U.S. patent4,961,634 (9October1990).

Crane, R. C.

Czyzak, S. J.

Doroski, D.

Ghosh, G.

Goldstein, D. H.

D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. A 7, 693–700 (1990).
[Crossref]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

Ivanov, G. A.

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).

Jensen, B.

Johnson, K. M.

Kartuchina, A. A.

S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).

Koroleva, G. A.

S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

Markov, E. V.

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

Neshmit, D.

Pogorelova, N. N.

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

Torabi, A.

Weil, R.

Appl. Opt. (2)

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, (1993).
[Crossref] [PubMed]

G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305–307 (1976).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

R. M. A. Azzam, “NIRSE: normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20, 405–408 (1977).
[Crossref]

Opt. Eng. (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

Opt. Lett. (1)

Sov. Phys. Semicond. (2)

S. A. Abagyan, G. A. Ivanov, A. A. Kartuchina, G. A. Koroleva, “Spectral dependence of birefringence of CdSe,” Sov. Phys. Semicond. 5, 1425–1426 (1972).

S. A. Abagyan, G. A. Ivanov, E. V. Markov, G. A. Koroleva, N. N. Pogorelova, “Optical properties of CdS with an improved structure,” Sov. Phys. Semicond. 5, 1751–1752 (1972).

Other (3)

Data sheet, Jendel Scientific, Corte Madera, Calif.

SigmaPlot, Jandel Scientific, (1991).

R. A. Chipman, D. B. Chenault, “Infrared achromatic retarder,” U.S. patent4,961,634 (9October1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Birefringence of (a) CdS and (b) CdSe. The solid curves show the experimental data, and the dashed curves show the birefringence predicted by previous dispersion relations.

Fig. 2
Fig. 2

Rotating sample polarimeter configuration. The sample is rotated between two fixed linear polarizers. This polarimeter is located in the sample compartment of a Fourier transform spectrometer.

Fig. 3
Fig. 3

Fourth harmonic coefficient spectrum of the output intensity from the rotating sample spectropolarimeter for the CdS sample. The phase of the signal is related to the retardance of the sample at each wavelength.

Fig. 4
Fig. 4

Refractive indices of (a) CdS and (b) CdSe. The solid curves show the extrapolation from previous relations when our birefringence data are used. The dashed curves show the indices calculated from previous dispersion relations to 10.6 μm, the long-wavelength limit of these relations. The extrapolations are within 0.04% of the data from previous dispersion relations. The extraordinary indices are on top.

Fig. 5
Fig. 5

Retardance spectrum of the IR achromatic quarter-wave retarder.

Tables (2)

Tables Icon

Table 1 Birefringence and Indices of Refraction from 2.5 to 16.5 μm for CdS and CdSe

Tables Icon

Table 2 Coefficients for the Sellmeier Equation Extrapolated from Previous Dispersion Relations and Experimental Birefringence

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( θ , λ ) = τ ( λ ) ( 1 + 1 2 { 1 + [ 1 D 2 ( λ ) ] 1 / 2 cos δ ( λ ) } + D ( λ ) cos 2 θ + 1 2 { 1 [ 1 D 2 ( λ ) ] 1 / 2 cos δ ( λ ) } cos 4 θ ) = τ ( λ ) [ a 0 ( λ ) + a 2 ( λ ) cos 2 θ + a 4 ( λ ) cos 4 θ ] ,
a 4 ( λ ) = τ ( λ ) [ 1 2 1 2 cos δ ( λ ) ] .
a 4 ( λ ) = α 0 + α 1 λ + α 2 λ 2 + ( β 0 + β 1 λ + β 2 λ 2 ) cos ( γ 0 + γ 1 λ + γ 2 λ 2 γ 3 ) ,
Δ n ( λ ) = λ 2 π d δ ( λ ) = λ 2 π d ( γ 0 + γ 1 λ + γ 2 λ 2 γ 3 ) ,
n 2 ( λ ) = A + B λ 2 λ 2 C + D λ 2 λ 2 E .
δ ( λ ) = 2 π λ ( Δ n 1 t 1 Δ n 2 t 2 )

Metrics