Abstract

It is shown that ozone generated by UV light can be used to clean carbon-contaminated synchrotron-radiation optics.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).
  2. R. A. Rosenberg, D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods A 291, 101–106 (1990).
    [CrossRef]
  3. E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
    [CrossRef]
  4. T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
    [CrossRef]
  5. R. A. Rosenberg, J. A. Smith, D. J. Wallace, “Plasma cleaning of beamline optical components: contamination and gas composition effects,” Rev. Sci. Instrum. 63, 1486–1489 (1992).
    [CrossRef]
  6. T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.
  7. J. R. Vig, “UV/ozone cleaning of surfaces’ research and development,” Tech. Rep. SLCET-TR-86-6 (U.S. Army Laboratory Command, Fort Monmouth, N.J., May1986).
  8. L. Zafonte, R. Chiu, “UV/ozone cleaning for organics removal in silicon wafers,” in Optical Microlithography III Technology for the Next Decade, H. L. Stower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.470, 164–175 (1984).
  9. Spectronics Corporation, 956 Bush Hollow Road, P.O. Box 448, Westbury, N.Y. 11590.
  10. Inficon Inc., 5 Adler Drive, East Syracuse, N.Y. 13057.

1992 (1)

R. A. Rosenberg, J. A. Smith, D. J. Wallace, “Plasma cleaning of beamline optical components: contamination and gas composition effects,” Rev. Sci. Instrum. 63, 1486–1489 (1992).
[CrossRef]

1990 (1)

R. A. Rosenberg, D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods A 291, 101–106 (1990).
[CrossRef]

1989 (1)

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

1987 (1)

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

1983 (1)

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Boiler, K.

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Chiu, R.

L. Zafonte, R. Chiu, “UV/ozone cleaning for organics removal in silicon wafers,” in Optical Microlithography III Technology for the Next Decade, H. L. Stower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.470, 164–175 (1984).

Garrett, R. F.

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

Haeblich, R. P.

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Harada, T.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Hogrefe, H.

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Hulbert, S. L.

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

Itou, M.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Jark, W.

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Johnson, E. D.

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

Knotek, M. L.

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

Koide, T.

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

Kunz, C.

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Maezawa, H.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Mancini, D. C.

R. A. Rosenberg, D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods A 291, 101–106 (1990).
[CrossRef]

Mikuni, A.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Mitani, S.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Okamoto, W.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Rosenberg, R. A.

R. A. Rosenberg, J. A. Smith, D. J. Wallace, “Plasma cleaning of beamline optical components: contamination and gas composition effects,” Rev. Sci. Instrum. 63, 1486–1489 (1992).
[CrossRef]

R. A. Rosenberg, D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods A 291, 101–106 (1990).
[CrossRef]

Sato, S.

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

Shidara, T.

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

Smith, J. A.

R. A. Rosenberg, J. A. Smith, D. J. Wallace, “Plasma cleaning of beamline optical components: contamination and gas composition effects,” Rev. Sci. Instrum. 63, 1486–1489 (1992).
[CrossRef]

Tanaka, K.

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

Vig, J. R.

J. R. Vig, “UV/ozone cleaning of surfaces’ research and development,” Tech. Rep. SLCET-TR-86-6 (U.S. Army Laboratory Command, Fort Monmouth, N.J., May1986).

Wallace, D. J.

R. A. Rosenberg, J. A. Smith, D. J. Wallace, “Plasma cleaning of beamline optical components: contamination and gas composition effects,” Rev. Sci. Instrum. 63, 1486–1489 (1992).
[CrossRef]

Williams, G. P.

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

Yagashita, A.

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

Yamaguchi, S.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Yamaoka, H.

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Zafonte, L.

L. Zafonte, R. Chiu, “UV/ozone cleaning for organics removal in silicon wafers,” in Optical Microlithography III Technology for the Next Decade, H. L. Stower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.470, 164–175 (1984).

Appl. Opt. (1)

T. Harada, S. Yamaguchi, M. Itou, S. Mitani, H. Maezawa, A. Mikuni, W. Okamoto, H. Yamaoka, “Ultraviolet/ozone cleaning of a soft-x-ray grating contaminated by synchrotron radiation,” Appl. Opt. 309, 1165–1168.

Nucl. Instrum. Methods (1)

K. Boiler, R. P. Haeblich, H. Hogrefe, W. Jark, C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods 208, 237–279 (1983).

Nucl. Instrum. Methods A (1)

R. A. Rosenberg, D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods A 291, 101–106 (1990).
[CrossRef]

Rev. Sci. Instrum. (3)

E. D. Johnson, S. L. Hulbert, R. F. Garrett, G. P. Williams, M. L. Knotek, “In situ reactive glow discharge cleaning of x-ray optical surfaces,” Rev. Sci. Instrum. 58, 1042–1045 (1987).
[CrossRef]

T. Koide, T. Shidara, K. Tanaka, A. Yagashita, S. Sato, “In situ oxygen-discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2034–2037 (1989).
[CrossRef]

R. A. Rosenberg, J. A. Smith, D. J. Wallace, “Plasma cleaning of beamline optical components: contamination and gas composition effects,” Rev. Sci. Instrum. 63, 1486–1489 (1992).
[CrossRef]

Other (4)

J. R. Vig, “UV/ozone cleaning of surfaces’ research and development,” Tech. Rep. SLCET-TR-86-6 (U.S. Army Laboratory Command, Fort Monmouth, N.J., May1986).

L. Zafonte, R. Chiu, “UV/ozone cleaning for organics removal in silicon wafers,” in Optical Microlithography III Technology for the Next Decade, H. L. Stower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.470, 164–175 (1984).

Spectronics Corporation, 956 Bush Hollow Road, P.O. Box 448, Westbury, N.Y. 11590.

Inficon Inc., 5 Adler Drive, East Syracuse, N.Y. 13057.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

5-m Extended-range grasshopper monochromator grating (a) before and (b) after cleaning.

Fig. 2
Fig. 2

Cleaning rate of PMMA films versus distance between the lamp and thickness monitor.

Metrics