Abstract

Raman scattering and fluorescence are important processes in oceanic optics because of their influence on the natural light field in the water. Monte Carlo simulations are described that verify that measurements of the Fraunhofer line depth in the in-water irradiance can be used to separate the irradiance into elastic and inelastic components, i.e., components that are generated by elastic- and inelastic-scattering processes, respectively. Specifically, the upwelling and downwelling irradiances, including Raman scattering, are simulated for a variety of model oceans. The inherent optical properties of the ocean are derived from a bio-optical model in which the elastic-scattering and the absorption coefficients of the biological material depend only on the phytoplankton pigment concentration, C. The Fraunhofer line at 656 nm is found to fill in, i.e., disappear into, the background continuum rapidly with increasing depth. This indicates a rapid transition from a near-surface light field dominated by elastic scattering to one composed of irradiance derived entirely from Raman scattering. Conversely the depth of the Fraunhofer line at 486 mm is nearly independent of depth in the water, indicating that Raman scattering never makes a significant contribution to the irradiance there. Between these two extremes, the lines at 518 and 589 nm show variations in line depths that depend significantly on C, e.g., at 518 nm the line fills in with increasing depth at low-C values but not at high-C values.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
    [CrossRef]
  2. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
    [CrossRef] [PubMed]
  3. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [CrossRef] [PubMed]
  4. R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 94–100 (1990).
  5. H. R. Gordon, “The diffuse reflectance of the ocean: The theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979).
    [CrossRef] [PubMed]
  6. R. W. Preisendorfer, C. D. Mobley, “Theory of fluorescent irradiance fields in natural waters,” J. Geophys. Res. 93D, 10,831–10,855 (1988).
  7. T. G. Peacock, K. L. Carder, C. O. Davis, R. G. Steward, “Effects of fluorescence and water Raman scattering on models of remote sensing reflection,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 303–319 (1990).
  8. J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
    [CrossRef]
  9. J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD II) for airborne and orbital remote sensing of solar stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).
  10. D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress,” Mar. Biol. 22, 39–46 (1973).
    [CrossRef]
  11. A. M. Kouassi, R. G. Zika, J. M. C. Plane, “Light-induced alteration of the photophysical properties of dissolved organic matter in sea water,” Neth. J. Sea Res. 27, 33–41 (1990).
    [CrossRef]
  12. T. J. Petzold, “Volume scattering functions for selected natural wafers,” SIO Ref. 72–78 (Visibility Laboratory, Scripps Institution of Oceanography, San Diego, Calif., 1972).
  13. S. P. S. Porto, “Angular dependence and depolarization ratio of the Raman effect,” J. Opt. Soc. Am. 56, 1585–1589 (1966).
    [CrossRef]
  14. C. H. Chang, L. A. Young, “Sea water temperature measurement from Raman spectra,” Res. Note 960, N62269-73-C-0073 (Avco Everett Research Laboratory, Inc., sponsored by Advanced Research Projects Agency, ARPA order 2194, January1974).
  15. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?”Limnol. Oceanogr. 34, 1389–1409 (1989).
    [CrossRef]
  16. H. R. Gordon, “Diffuse reflectance of the ocean: Influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
    [CrossRef] [PubMed]
  17. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  18. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
    [CrossRef]
  19. K. J. Voss, “Electro-optic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).
  20. K. J. Voss, “Use of the radiance distribution to measure the optical absorption coefficient in the ocean,” Limnol. Oceanogr. 34, 1614–1622 (1989).
    [CrossRef]

1992 (1)

1990 (2)

B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
[CrossRef] [PubMed]

A. M. Kouassi, R. G. Zika, J. M. C. Plane, “Light-induced alteration of the photophysical properties of dissolved organic matter in sea water,” Neth. J. Sea Res. 27, 33–41 (1990).
[CrossRef]

1989 (3)

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?”Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

K. J. Voss, “Electro-optic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).

K. J. Voss, “Use of the radiance distribution to measure the optical absorption coefficient in the ocean,” Limnol. Oceanogr. 34, 1614–1622 (1989).
[CrossRef]

1988 (2)

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
[CrossRef] [PubMed]

R. W. Preisendorfer, C. D. Mobley, “Theory of fluorescent irradiance fields in natural waters,” J. Geophys. Res. 93D, 10,831–10,855 (1988).

1984 (2)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

1979 (1)

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1975 (1)

J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD II) for airborne and orbital remote sensing of solar stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).

1973 (1)

D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress,” Mar. Biol. 22, 39–46 (1973).
[CrossRef]

1966 (1)

1962 (1)

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Carder, K. L.

T. G. Peacock, K. L. Carder, C. O. Davis, R. G. Steward, “Effects of fluorescence and water Raman scattering on models of remote sensing reflection,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 303–319 (1990).

Chang, C. H.

C. H. Chang, L. A. Young, “Sea water temperature measurement from Raman spectra,” Res. Note 960, N62269-73-C-0073 (Avco Everett Research Laboratory, Inc., sponsored by Advanced Research Projects Agency, ARPA order 2194, January1974).

Davis, C. O.

T. G. Peacock, K. L. Carder, C. O. Davis, R. G. Steward, “Effects of fluorescence and water Raman scattering on models of remote sensing reflection,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 303–319 (1990).

Gordon, H. R.

Grainger, J. F.

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Kiefer, D. A.

D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress,” Mar. Biol. 22, 39–46 (1973).
[CrossRef]

Kishino, M.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Kouassi, A. M.

A. M. Kouassi, R. G. Zika, J. M. C. Plane, “Light-induced alteration of the photophysical properties of dissolved organic matter in sea water,” Neth. J. Sea Res. 27, 33–41 (1990).
[CrossRef]

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

Marshall, B. R.

Mobley, C. D.

R. W. Preisendorfer, C. D. Mobley, “Theory of fluorescent irradiance fields in natural waters,” J. Geophys. Res. 93D, 10,831–10,855 (1988).

Morel, A.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

Okami, N.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Peacock, T. G.

T. G. Peacock, K. L. Carder, C. O. Davis, R. G. Steward, “Effects of fluorescence and water Raman scattering on models of remote sensing reflection,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 303–319 (1990).

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected natural wafers,” SIO Ref. 72–78 (Visibility Laboratory, Scripps Institution of Oceanography, San Diego, Calif., 1972).

Plane, J. M. C.

A. M. Kouassi, R. G. Zika, J. M. C. Plane, “Light-induced alteration of the photophysical properties of dissolved organic matter in sea water,” Neth. J. Sea Res. 27, 33–41 (1990).
[CrossRef]

Plascyk, J. A.

J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD II) for airborne and orbital remote sensing of solar stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).

Porto, S. P. S.

Preisendorfer, R. W.

R. W. Preisendorfer, C. D. Mobley, “Theory of fluorescent irradiance fields in natural waters,” J. Geophys. Res. 93D, 10,831–10,855 (1988).

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Ring, J.

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Smith, R. C.

Stavn, R. H.

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
[CrossRef] [PubMed]

R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 94–100 (1990).

Steward, R. G.

T. G. Peacock, K. L. Carder, C. O. Davis, R. G. Steward, “Effects of fluorescence and water Raman scattering on models of remote sensing reflection,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 303–319 (1990).

Sugihara, S.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Voss, K. J.

K. J. Voss, “Use of the radiance distribution to measure the optical absorption coefficient in the ocean,” Limnol. Oceanogr. 34, 1614–1622 (1989).
[CrossRef]

K. J. Voss, “Electro-optic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).

Weidemann, A. D.

Young, L. A.

C. H. Chang, L. A. Young, “Sea water temperature measurement from Raman spectra,” Res. Note 960, N62269-73-C-0073 (Avco Everett Research Laboratory, Inc., sponsored by Advanced Research Projects Agency, ARPA order 2194, January1974).

Zika, R. G.

A. M. Kouassi, R. G. Zika, J. M. C. Plane, “Light-induced alteration of the photophysical properties of dissolved organic matter in sea water,” Neth. J. Sea Res. 27, 33–41 (1990).
[CrossRef]

Appl. Opt. (4)

J. Geophys. Res. (1)

R. W. Preisendorfer, C. D. Mobley, “Theory of fluorescent irradiance fields in natural waters,” J. Geophys. Res. 93D, 10,831–10,855 (1988).

J. Oceanogr. Soc. Jpn. (1)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (3)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

K. J. Voss, “Use of the radiance distribution to measure the optical absorption coefficient in the ocean,” Limnol. Oceanogr. 34, 1614–1622 (1989).
[CrossRef]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?”Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

Mar. Biol. (1)

D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress,” Mar. Biol. 22, 39–46 (1973).
[CrossRef]

Nature (London) (1)

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Neth. J. Sea Res. (1)

A. M. Kouassi, R. G. Zika, J. M. C. Plane, “Light-induced alteration of the photophysical properties of dissolved organic matter in sea water,” Neth. J. Sea Res. 27, 33–41 (1990).
[CrossRef]

Opt. Eng. (2)

J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD II) for airborne and orbital remote sensing of solar stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).

K. J. Voss, “Electro-optic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).

Sol. Phys. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

Other (4)

C. H. Chang, L. A. Young, “Sea water temperature measurement from Raman spectra,” Res. Note 960, N62269-73-C-0073 (Avco Everett Research Laboratory, Inc., sponsored by Advanced Research Projects Agency, ARPA order 2194, January1974).

T. G. Peacock, K. L. Carder, C. O. Davis, R. G. Steward, “Effects of fluorescence and water Raman scattering on models of remote sensing reflection,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 303–319 (1990).

T. J. Petzold, “Volume scattering functions for selected natural wafers,” SIO Ref. 72–78 (Visibility Laboratory, Scripps Institution of Oceanography, San Diego, Calif., 1972).

R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 94–100 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Raman-scattering coefficient as a function of the Raman shift, νs.

Fig. 2
Fig. 2

Depolarization ratio as a function of νs for Raman scattering.

Fig. 3
Fig. 3

Effective contribution of excitation wavelength λe to the Raman-scattered light in a narrow band around 589 nm. This shows that the source of the Raman-generated irradiance at the 589-nm Fraunhofer line is broad, approximately 25 nm in width.

Fig. 4
Fig. 4

Parameter η as a function of depth for the upwelling and downwelling irradiances. The multiexcitation case results from splitting the excitation into four equal portions with different depolarization ratios, excitation wavelengths, IOP's, and incident solar irradiances, and subsequently treats each portion separately. The single excitation example uses average properties for an excitation source at the center of the excitation band.

Fig. 5
Fig. 5

Parameter η as a function of depth and pigment concentration for irradiance at the 486-nm Fraunhofer line. The downwelling case is shown in (a), while the upwelling case is shown in (b). The inset figure illustrates the absorption coefficient of water and phytoplankton (C = 1 mg/m3) in inverse meters, with the relevant excitation and emission lines.

Fig. 6
Fig. 6

As in Fig. 5, except at the 518-nm Fraunhofer line.

Fig. 7
Fig. 7

As in Fig. 5, except at the 589-nm Fraunhofer line.

Fig. 8
Fig. 8

As in Fig. 5, except at the 656-nm Fraunhofer line.

Fig. 9
Fig. 9

Parameter η as a function of depth for the upwelling and the downwelling irradiances at the 589-nm Fraunhofer line for C = 0.5 mg/m3. This shows the variation of η with solar zenith angle θ0.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

cos θ d L ( z , θ , ϕ , λ ) d z = c ( z , λ ) L ( z , θ , ϕ , λ ) + Ω β ( z , θ , ϕ θ , ϕ , λ ) L ( z , θ , ϕ , λ ) d Ω + Ω β in ( z , θ , ϕ θ , ϕ , λ e λ ) × L ( z , θ , ϕ , λ e ) d Ω d λ e .
c ( z , λ ) = a ( z , λ ) + b ( z , λ ) + b in ( z , λ λ ) ,
b ( z , λ ) = Ω β ( z , θ , ϕ θ , ϕ , λ ) d Ω , b in ( z , λ λ ) = Ω β in ( z , θ , ϕ θ , ϕ , λ λ ) d Ω .
b ( z , λ ) = 2 π 0 π β ( z , α , λ ) sin α d α , b in ( z , λ λ ) = 2 π 0 π β in ( z , α , λ λ ) sin α d α .
β in ( z , α , λ e λ ) = 1 4 π l = 0 N b in ( l ) ( z , λ e λ ) P l ( cos α ) .
E d ( z , λ ) = 0 2 π 0 π / 2 cos θ L ( z , θ , ϕ , λ ) sin θ d θ d ϕ , E u ( z , λ ) = 0 2 π π / 2 π cos θ L ( z , θ , ϕ , λ ) sin θ d θ d ϕ , E 0 ( z , λ ) = 0 2 π 0 π L ( z , θ , ϕ , λ ) sin θ d θ d ϕ .
L ( 0 ) ( z , θ , λ ) = 1 2 π 0 2 π L ( z , θ , ϕ , λ ) d ϕ .
cos θ d L ( 0 ) ( z , θ , λ ) d z = c ( z , λ ) L ( 0 ) ( z , θ , λ ) + Ω β ( 0 ) ( z , θ θ , λ ) L ( 0 ) ( z , θ , λ ) sin θ d θ + J in ( z , θ , λ ) ,
β ( 0 ) ( z , θ θ , λ ) = 1 2 π 0 2 π β ( z , θ , ϕ θ , ϕ , λ ) d ϕ ,
J in ( z , θ , λ ) = 1 4 π l = 0 N b in ( l ) ( z , λ e λ ) P l ( cos θ ) E l ( z , λ e ) d λ e ,
E l ( z , λ e ) = 2 π 0 π P l ( cos θ ) L ( 0 ) ( z , θ , λ e ) sin θ d θ .
J fl ( z , θ , λ ) = 1 4 π b fl ( z , λ e λ ) E 0 ( z , λ e ) d λ e .
β r ( z , α , λ e λ ) = 3 16 π ( 1 + 3 ρ 1 + 2 ρ ) ( 1 + γ cos 2 α ) b r ( z , λ e λ ) = 3 16 π ( 1 + 3 ρ 1 + 2 ρ ) [ 1 + 1 3 γ + 2 3 γ P 2 ( cos α ) ] b r ( z , λ e λ ) ,
γ = 1 ρ 1 + 3 ρ
b r ( 0 ) ( z , λ e λ ) = b r ( z , λ e λ ) , b r ( 2 ) ( z , λ e λ ) = 1 2 ( 1 ρ 1 + 2 ρ ) b r ( z , λ e λ ) .
J r ( z , θ , λ ) = 1 4 π b r ( z , λ e λ ) E 0 ( z , λ e ) × [ 1 + 1 2 ( 1 ρ 1 + 2 ρ ) E 2 ( z , λ e ) E 0 ( z , λ e ) P 2 ( cos θ ) ] d λ e .
J in ( z , θ , λ ) = 1 4 π b in ( z , λ e λ ) Δ λ e E 0 ( z , λ e ) × l = 0 N b in ( l ) ( z , λ e λ ) E l ( z , λ e ) b in ( z , λ e λ ) E 0 ( z , λ e ) P l ( cos θ ) ,
p ( z ) = E 0 ( z , λ e ) 0 E 0 ( z , λ e ) d z ;
r j = 0 z p ( z ) d z .
p ( θ z ) = 1 4 π l = 0 N b in ( l ) ( z , λ e λ ) E l ( z λ e ) b in ( z , λ e λ ) E 0 ( z , λ e ) P l ( cos θ ) ,
r j + 1 = 0 θ p ( θ z ) d θ .
W = b in ( z , λ e λ ) Δ λ e 0 E 0 ( z , λ e ) d z ,
η = E f ( λ ) E b ( λ ) ,
η s = E f s ( λ ) E b s ( λ ) ,
E d ( in ) ( z , λ ) = η η s 1 η s E d total ( z , λ ) , E d ( el ) ( z , λ ) = 1 η 1 η s E d total ( z , λ ) ,

Metrics