Abstract

High peak power transverse excitation atmospheric CO2 laser pulses are transmitted through flexible hollow sapphire waveguides with losses of 0.84 dB/m and no damage to the waveguides.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  2. E. Marcatili, R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Sys. Tech. J. 43, 1783–1809 (1964).
  3. U. Kubo, Y. Hashishin, K. Okada, “Optical beam guides for medical CO2 and excimer lasers,” in Optical Fibers in Medicine III,A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.906, 214–219 (1988).
  4. A. Chester, R. Abrams, “Mode losses in hollow-waveguide lasers,” Appl. Phys. Lett. 21, 576–578 (1972).
    [CrossRef]

1990 (1)

1972 (1)

A. Chester, R. Abrams, “Mode losses in hollow-waveguide lasers,” Appl. Phys. Lett. 21, 576–578 (1972).
[CrossRef]

1964 (1)

E. Marcatili, R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Sys. Tech. J. 43, 1783–1809 (1964).

Abrams, R.

A. Chester, R. Abrams, “Mode losses in hollow-waveguide lasers,” Appl. Phys. Lett. 21, 576–578 (1972).
[CrossRef]

Chester, A.

A. Chester, R. Abrams, “Mode losses in hollow-waveguide lasers,” Appl. Phys. Lett. 21, 576–578 (1972).
[CrossRef]

Gregory, C.

Harrington, J.

Hashishin, Y.

U. Kubo, Y. Hashishin, K. Okada, “Optical beam guides for medical CO2 and excimer lasers,” in Optical Fibers in Medicine III,A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.906, 214–219 (1988).

Kubo, U.

U. Kubo, Y. Hashishin, K. Okada, “Optical beam guides for medical CO2 and excimer lasers,” in Optical Fibers in Medicine III,A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.906, 214–219 (1988).

Marcatili, E.

E. Marcatili, R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Sys. Tech. J. 43, 1783–1809 (1964).

Okada, K.

U. Kubo, Y. Hashishin, K. Okada, “Optical beam guides for medical CO2 and excimer lasers,” in Optical Fibers in Medicine III,A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.906, 214–219 (1988).

Schmeltzer, R.

E. Marcatili, R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Sys. Tech. J. 43, 1783–1809 (1964).

Appl. Phys. Lett. (1)

A. Chester, R. Abrams, “Mode losses in hollow-waveguide lasers,” Appl. Phys. Lett. 21, 576–578 (1972).
[CrossRef]

Bell Sys. Tech. J. (1)

E. Marcatili, R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Sys. Tech. J. 43, 1783–1809 (1964).

Opt. Lett. (1)

Other (1)

U. Kubo, Y. Hashishin, K. Okada, “Optical beam guides for medical CO2 and excimer lasers,” in Optical Fibers in Medicine III,A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.906, 214–219 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Theoretical attenuation (solid curve) and the lowest attenuation measured for 122-cm lengths of the available sizes of hollow sapphire waveguides.

Fig. 2
Fig. 2

Intensity distribution of a CO2 TEA laser with (a) no filtering of higher-order cavity modes and (b) with aperture closed to permit only low-order modes (b).

Fig. 3
Fig. 3

Attenuation of three sizes of hollow sapphire waveguide, 122 cm long, versus TEA laser cavity aperture settings. Filled circles, 1070-μm bore; filled squares, 790-μm bore; filled triangles, 580-μm bore.

Fig. 4
Fig. 4

Attenuation of three sizes of hollow sapphire waveguide, 122 cm long, for a range of powers from a apertured TEA laser. Filled circles, 580-μm core; filled squares, 790-μm core; filled triangles, 1070-μm core.

Metrics