Abstract

Rigrod theory was used to model outcoupled power from a low-gain laser with good accuracy. For a low-gain overtone cw HF chemical laser, Rigrod theory shows that a higher medium saturation yields a higher overall overtone efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low-absorption–scattering loss overtone mirrors and a 5% penalty in outcoupled power, the intracavity flux and hence the mirror loading may be reduced by more than a factor of 2 when the gain length is long enough to saturate the medium well. For the University of Illinois at Urbana-Champaign overtone laser that has an extensive database with well-characterized mirrors for which the Rigrod parameters g0 and Isat were firmly established, the accuracy to which the reflectivities of high-reflectivity overtone mirrors can be deduced by using measured mirror transmissivities, measured outcoupled power, and Rigrod theory is approximatly ±0.07%. This method of accurately deducing mirror reflectivities may be applicable to other low-gain laser systems that use high-reflectivity mirrors at different wavelengths. The maximum overtone efficiency is estimated to be approximately 80%–100%.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
    [CrossRef]
  2. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
    [CrossRef]
  3. H. Mirels, S. B. Batdorf, “Centerline laser radiation intensity in an unstable cavity,” Appl. Opt. 11, 2384–2386 (1972).
    [CrossRef] [PubMed]
  4. W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
    [CrossRef]
  5. G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).
    [CrossRef]
  6. T. R. Ferguson, “Lasers with saturable gain and distributed loss,” Appl. Opt. 26, 2522–2527 (1987).
    [CrossRef] [PubMed]
  7. J. L. Sollee, J. D. Hrubes, J. P. Dering, “Zenith blue research array (ZEBRA) test report,” TRW Tech. Rep. ZB-001, FSCM No. 11982 (TRW, Redondo Beach, Calif., 1989).
  8. W. Duncan, M. Holloman, B. Rogers, S. Patterson, “Hydrogen fluoride overtone chemical laser technology,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.
  9. W. Duncan, S. Patterson, B. Graves, M. Holloman, “Recent progress in hydrogen fluoride overtone chemical lasers,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.
  10. W. Q. Jeffers, “Short wavelength chemical laser technology development,” Helios, Inc., Longmont, CO, final rep. for Directed Energy Directorate, Research, Development and Engineering Center, U.S. Army Missile Command, Redstone Arsenal, Ala. (Helios, Inc., Longmont, Co., 1988).
  11. W. Q. Jeffers, “Short wavelength chemical lasers,” AIAA J. 27, 64–66 (1989).
    [CrossRef]
  12. L. H. Sentman, D. L. Carroll, P. T. Theodoropoulos, R. E. Waldo, “HF overtone performance and residual fundamental gain,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.
  13. D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).
  14. D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).
  15. D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008–3016 (1980).
    [CrossRef]
  16. L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).
  17. L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.
  18. L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” Tech. Rep. 92-4, UILU Eng. 92-0504 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).
  19. R. Ferguson, W. P. Latham, “Efficiency and equivalence of homogeneously broadened lossy lasers,” Appl. Opt. 31, 4113–4121 (1992).
    [CrossRef] [PubMed]
  20. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959).
  21. R. E. Meredith, F. G. Smith, “Computation of electric dipole matrix elements for hydrogen fluoride,” J. Quant. Spectrosc. Radiat. Transfer 13, 89–114 (1973).
    [CrossRef]
  22. L. H. Sentman, M. Subbiah, S. W. Zelazny, “blaze ii: a chemical laser simulation computer program,” Tech. Rep. H-CR-77-8 (Bell Aerospace Textron, Buffalo, N.Y., 1977).

1993 (1)

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

1992 (1)

1989 (1)

W. Q. Jeffers, “Short wavelength chemical lasers,” AIAA J. 27, 64–66 (1989).
[CrossRef]

1987 (1)

1980 (2)

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).
[CrossRef]

D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008–3016 (1980).
[CrossRef]

1978 (1)

W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
[CrossRef]

1973 (1)

R. E. Meredith, F. G. Smith, “Computation of electric dipole matrix elements for hydrogen fluoride,” J. Quant. Spectrosc. Radiat. Transfer 13, 89–114 (1973).
[CrossRef]

1972 (1)

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

1963 (1)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Batdorf, S. B.

Carroll, D. L.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

L. H. Sentman, D. L. Carroll, P. T. Theodoropoulos, R. E. Waldo, “HF overtone performance and residual fundamental gain,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” Tech. Rep. 92-4, UILU Eng. 92-0504 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

Dering, J. P.

J. L. Sollee, J. D. Hrubes, J. P. Dering, “Zenith blue research array (ZEBRA) test report,” TRW Tech. Rep. ZB-001, FSCM No. 11982 (TRW, Redondo Beach, Calif., 1989).

Duncan, W.

W. Duncan, M. Holloman, B. Rogers, S. Patterson, “Hydrogen fluoride overtone chemical laser technology,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

W. Duncan, S. Patterson, B. Graves, M. Holloman, “Recent progress in hydrogen fluoride overtone chemical lasers,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

Eimerl, D.

D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008–3016 (1980).
[CrossRef]

Ferguson, R.

Ferguson, T. R.

Gilmore, J.

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” Tech. Rep. 92-4, UILU Eng. 92-0504 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

Gordon, S. J.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

Graves, B.

W. Duncan, S. Patterson, B. Graves, M. Holloman, “Recent progress in hydrogen fluoride overtone chemical lasers,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

Holloman, M.

W. Duncan, S. Patterson, B. Graves, M. Holloman, “Recent progress in hydrogen fluoride overtone chemical lasers,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

W. Duncan, M. Holloman, B. Rogers, S. Patterson, “Hydrogen fluoride overtone chemical laser technology,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

Hrubes, J. D.

J. L. Sollee, J. D. Hrubes, J. P. Dering, “Zenith blue research array (ZEBRA) test report,” TRW Tech. Rep. ZB-001, FSCM No. 11982 (TRW, Redondo Beach, Calif., 1989).

Jeffers, W. Q.

W. Q. Jeffers, “Short wavelength chemical lasers,” AIAA J. 27, 64–66 (1989).
[CrossRef]

W. Q. Jeffers, “Short wavelength chemical laser technology development,” Helios, Inc., Longmont, CO, final rep. for Directed Energy Directorate, Research, Development and Engineering Center, U.S. Army Missile Command, Redstone Arsenal, Ala. (Helios, Inc., Longmont, Co., 1988).

Latham, W. P.

Meredith, R. E.

R. E. Meredith, F. G. Smith, “Computation of electric dipole matrix elements for hydrogen fluoride,” J. Quant. Spectrosc. Radiat. Transfer 13, 89–114 (1973).
[CrossRef]

Mirels, H.

Nguyen, T. X.

L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).

Otto, J. W.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

Patterson, S.

W. Duncan, M. Holloman, B. Rogers, S. Patterson, “Hydrogen fluoride overtone chemical laser technology,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

W. Duncan, S. Patterson, B. Graves, M. Holloman, “Recent progress in hydrogen fluoride overtone chemical lasers,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

Penner, S. S.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959).

Rigrod, W. W.

W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
[CrossRef]

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Rogers, B.

W. Duncan, M. Holloman, B. Rogers, S. Patterson, “Hydrogen fluoride overtone chemical laser technology,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

Schindler, G. M.

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).
[CrossRef]

Sentman, L. H.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

L. H. Sentman, D. L. Carroll, P. T. Theodoropoulos, R. E. Waldo, “HF overtone performance and residual fundamental gain,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

L. H. Sentman, M. Subbiah, S. W. Zelazny, “blaze ii: a chemical laser simulation computer program,” Tech. Rep. H-CR-77-8 (Bell Aerospace Textron, Buffalo, N.Y., 1977).

L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” Tech. Rep. 92-4, UILU Eng. 92-0504 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

Smith, F. G.

R. E. Meredith, F. G. Smith, “Computation of electric dipole matrix elements for hydrogen fluoride,” J. Quant. Spectrosc. Radiat. Transfer 13, 89–114 (1973).
[CrossRef]

Sollee, J. L.

J. L. Sollee, J. D. Hrubes, J. P. Dering, “Zenith blue research array (ZEBRA) test report,” TRW Tech. Rep. ZB-001, FSCM No. 11982 (TRW, Redondo Beach, Calif., 1989).

Subbiah, M.

L. H. Sentman, M. Subbiah, S. W. Zelazny, “blaze ii: a chemical laser simulation computer program,” Tech. Rep. H-CR-77-8 (Bell Aerospace Textron, Buffalo, N.Y., 1977).

Theodoropoulos, P. T.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

L. H. Sentman, D. L. Carroll, P. T. Theodoropoulos, R. E. Waldo, “HF overtone performance and residual fundamental gain,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).

Waldo, R. E.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

L. H. Sentman, D. L. Carroll, P. T. Theodoropoulos, R. E. Waldo, “HF overtone performance and residual fundamental gain,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).

Zelazny, S. W.

L. H. Sentman, M. Subbiah, S. W. Zelazny, “blaze ii: a chemical laser simulation computer program,” Tech. Rep. H-CR-77-8 (Bell Aerospace Textron, Buffalo, N.Y., 1977).

AIAA J. (2)

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, “Experimental Study of cw HF Chemical Laser Overtone Performance,” AIAA J. 31, 693–700 (1993).

W. Q. Jeffers, “Short wavelength chemical lasers,” AIAA J. 27, 64–66 (1989).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (2)

W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
[CrossRef]

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).
[CrossRef]

J. Appl. Phys. (3)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008–3016 (1980).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

R. E. Meredith, F. G. Smith, “Computation of electric dipole matrix elements for hydrogen fluoride,” J. Quant. Spectrosc. Radiat. Transfer 13, 89–114 (1973).
[CrossRef]

Other (11)

L. H. Sentman, M. Subbiah, S. W. Zelazny, “blaze ii: a chemical laser simulation computer program,” Tech. Rep. H-CR-77-8 (Bell Aerospace Textron, Buffalo, N.Y., 1977).

L. H. Sentman, T. X. Nguyen, P. T. Theodoropoulos, R. E. Waldo, D. L. Carroll, “An experimental study of supersonic cw HF chemical laser zero power gain,” Tech. Rep. 89-6, UILU Eng. 89-0506 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1989).

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

L. H. Sentman, D. L. Carroll, J. Gilmore, “Modeling cw HF fundamental and overtone lasers,” Tech. Rep. 92-4, UILU Eng. 92-0504 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959).

L. H. Sentman, D. L. Carroll, P. T. Theodoropoulos, R. E. Waldo, “HF overtone performance and residual fundamental gain,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

D. L. Carroll, L. H. Sentman, P. T. Theodoropoulos, R. E. Waldo, S. J. Gordon, J. W. Otto, “Experimental and theoretical study of cw HF chemical laser overtone performance, Tech. Rep. 92-2, UILU Eng. 92-0502 (Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, Ill., 1992).

J. L. Sollee, J. D. Hrubes, J. P. Dering, “Zenith blue research array (ZEBRA) test report,” TRW Tech. Rep. ZB-001, FSCM No. 11982 (TRW, Redondo Beach, Calif., 1989).

W. Duncan, M. Holloman, B. Rogers, S. Patterson, “Hydrogen fluoride overtone chemical laser technology,” presented at the 20th AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, N.Y., 12–14 June 1989.

W. Duncan, S. Patterson, B. Graves, M. Holloman, “Recent progress in hydrogen fluoride overtone chemical lasers,” presented at the 22nd AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Haw., 24–26 June 1991.

W. Q. Jeffers, “Short wavelength chemical laser technology development,” Helios, Inc., Longmont, CO, final rep. for Directed Energy Directorate, Research, Development and Engineering Center, U.S. Army Missile Command, Redstone Arsenal, Ala. (Helios, Inc., Longmont, Co., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Comparison of SSL regular He injection overtone data and outcoupled power predicted by Rigrod theory as a function of the total mirror losses for the parameters g0 and Isat that gave good agreement with the data.

Fig. 2
Fig. 2

Outcoupled power predicted by Rigrod theory as a function of reflectivity for the parameters g0 and Isat that matched theory to overtone data for the 4mCC #5/#6 mirror combination.

Fig. 3
Fig. 3

Outcoupled power predicted by Rigrod theory as a function of reflectivity for the parameters g0 and Isat that matched theory to overtone data for the 4mCC #1/#2 mirror combination.

Fig. 4
Fig. 4

Outcoupled power predicted by Rigrod theory as a function of reflectivity for the parameters g0 and Isat that matched theory to overtone data for the 4mCC #9/#10 mirror combination.

Fig. 5
Fig. 5

Outcoupled power predicted by Rigrod theory for the 30-cm device versus reflectivity as a function of the absorption–scattering losses for the parameters g0 = 0.00085 cm−1 and Isat = 15,000 W/cm2 that matched theory to overtone data.

Fig. 6
Fig. 6

Outcoupled power predicted by Rigrod theory for a 60-cm device versus reflectivity as a function of the absorption–scattering losses for the parameters g0 = 0.00085 cm−1 and Isat = 15,000 W/cm2 that matched theory to overtone data.

Fig. 7
Fig. 7

Transmissivity and absorption–scattering as a function of reflectivity for the individual overtone mirrors and interpolated curves.

Fig. 8
Fig. 8

Intracavity overtone power versus reflectivity for regular He injection data and Rigrod theory.

Fig. 9
Fig. 9

Overtone efficiency as a function of reflectivity predicted by Rigrod theory (exact and approximate expressions) compared with SSL data.

Fig. 10
Fig. 10

Comparison of SSL regular He injection fundamental data and outcoupled power predicted by Rigrod theory as a function of reflectivity for the parameters g0 and Isat that gave good agreement with the data.

Tables (3)

Tables Icon

Table 1 List of Fundamental and Overtone Mirror Sets Used for the UIUC SSL Experimentsa

Tables Icon

Table 2 List of the Different Overtone Mirror Combinations, Their Effective Reflectivity, Their Total Transmission, and Their Total Mirror Absorption-Scattering Lossa

Tables Icon

Table 3 Overtone Outcoupled Power and Efficiency as a Function of Reflectivity and Gain Length as Predicted by Rigrod Theory

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ϕ = P 20 ( P F ) max ,
I out = I sat ( T 2 R 1 + T 1 R 2 ) ( g 0 L e + ln R 1 R 2 ) ( R 1 + R 2 ) ( 1 R 1 R 2 ) ,
AS 1 = 1 R 1 T 1 ,
AS 2 = 1 R 2 T 2 ,
P out = I sat A ( T 2 R 1 + T 1 R 2 ) ( g 0 L e + ln R 1 R 2 ) ( R 1 + R 2 ) ( 1 R 1 R 2 ) .
P total = P out + P AS ,
P AS = P IC ( AS 1 + AS 2 ) ,
P IC = P out T 1 + T 2 ,
P total = P out ( 1 + AS 1 + AS 2 T 1 + T 2 )
P total = P IC ( T 1 + T 2 + AS 1 + AS 2 ) .
P total = P IC ( 2 R 1 R 2 ) ,
ϕ = P total ( P F ) max = P IC ( 2 R 1 R 2 ) ( P F ) max .
β IC = ( β + + β ) mirror = β 2 + β 3 = β 2 ( 1 + R 2 ) ,
β IC = [ ( 1 + R 2 ) R 1 ] ( g 0 L e + ln R 1 R 2 ) ( R 1 + R 2 ) ( 1 R 1 R 2 ) .
P IC = I sat A [ ( 1 + R 2 ) R 1 ] ( g 0 L e + ln R 1 R 2 ) 2 ( R 1 + R 2 ) ( 1 R 1 R 2 ) .
ϕ = ( I sat A ) ( P F ) max [ ( 1 + R 2 ) R 1 ] ( g 0 L e + ln R 1 R 2 ) 2 ( R 1 + R 2 ) ( 1 R 1 R 2 ) ( 2 R 1 R 2 )
ϕ = ( I sat A ) ( P F ) max ( g 0 L e + R 1 R 2 1 ) .
[ ( g 0 ) fundamental ( g 0 ) overtone ] Rigrod = 0.055 cm 1 0.00085 cm 1 = 64.7 .
[ ( g 0 ) fundamental ( g 0 ) overtone ] ORNECL , avg . = 68.8.
[ ( B L U ) 2 1 ( B L U ) 2 0 ] = 120.4 ,
P out = I sat A [ 1 AS R 1 R 2 ] [ 1 R 1 R 2 ] ( g 0 L e + ln R 1 R 2 ) .
P out = I sat A ( g 0 L e + ln R 1 R 2 ) .
P out = P avail = I sat A g 0 L e ,

Metrics