Abstract

The properties of avalanche photodiodes and associated electronics required for photon counting in the Geiger and the sub-Geiger modes are reviewed. When the Geiger mode is used, there are significant improvements reported in overall photon detection efficiencies (approaching 70% at 633 nm), and a timing jitter (under 200 ps) is achieved with passive quenching at high overvoltages (20–30 V). The results obtained by using an active-mode fast quench circuit capable of switching overvoltages as high as 15 V (giving photon detection efficiencies in the 50% range) with a dead time of less than 50 ns are reported. Larger diodes (up to 1 mm in diameter) that are usable in the Geiger mode and that have quantum efficiencies over 80% in the 500–800-nm range are also reported.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–162 (1985).
    [CrossRef]
  2. A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988, pp. 183–191.
  3. A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)
  4. EG&G C30902S/C30921S data sheet (EG&G Canada Ltd., Vaudreuil, Quebec, Canada).
  5. EG&G SPCM-100/200-PQ data sheet (EG&G Canada Ltd., Vaudreuil, Quebec, Canada).
  6. See, for example, S. Cova, G. Ripamonti, A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
  7. S. Cova, Diportmenti di Elettronica, Politecnico di Milano, 20133 Milan, Italy (personal communication, 1992).
  8. See, for example, P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 235–278 (1974).
  9. W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
    [CrossRef]
  10. R. J. McIntyre, “On the avalanche initiation probability of avalanche-diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
    [CrossRef]
  11. S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
    [CrossRef]
  12. R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef] [PubMed]
  13. R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [CrossRef] [PubMed]
  14. J. G. Rarity, K. D. Ridley, P. R. Tapster, “An absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  15. P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).
  16. L.-Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single photon avalanche diode for single molecule detection,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 137.
  17. M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 1–5 (1991).
    [CrossRef]
  18. S. Cova, A. Longini, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
    [CrossRef]
  19. N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
    [CrossRef]
  20. T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high-rate situations,” Nucl. Instrum. Methods (to be published).
  21. X. Sun, F. M. Davidson, “Photon counting with silicon avalanche photodiodes,” J. Lightwave Technol. 10, 1023–1032 (1992)
    [CrossRef]

1992

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche photodiodes,” J. Lightwave Technol. 10, 1023–1032 (1992)
[CrossRef]

1991

N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 1–5 (1991).
[CrossRef]

1987

1986

1985

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–162 (1985).
[CrossRef]

1982

S. Cova, A. Longini, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

1981

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

1974

See, for example, P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 235–278 (1974).

1973

R. J. McIntyre, “On the avalanche initiation probability of avalanche-diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
[CrossRef]

1972

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Antognetti, P.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

Brown, R. G. W.

Chiao, R.

P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).

Conradi, J.

See, for example, P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 235–278 (1974).

Cova, S.

See, for example, S. Cova, G. Ripamonti, A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).

S. Cova, A. Longini, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

S. Cova, Diportmenti di Elettronica, Politecnico di Milano, 20133 Milan, Italy (personal communication, 1992).

Davidson, F. M.

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche photodiodes,” J. Lightwave Technol. 10, 1023–1032 (1992)
[CrossRef]

Davis, L. M.

L.-Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single photon avalanche diode for single molecule detection,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 137.

Eberhard, P. B.

P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).

Fenker, H. C.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high-rate situations,” Nucl. Instrum. Methods (to be published).

Ghioni, M.

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 1–5 (1991).
[CrossRef]

Kwiat, P.

P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).

Lacaita, A.

See, for example, S. Cova, G. Ripamonti, A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).

Li, L.-Q.

L.-Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single photon avalanche diode for single molecule detection,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 137.

Lightstone, A. W.

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988, pp. 183–191.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

Longini, A.

S. Cova, A. Longini, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

MacGregor, A. D.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

MacSween, D. E.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

McIntyre, R. J.

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–162 (1985).
[CrossRef]

See, for example, P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 235–278 (1974).

R. J. McIntyre, “On the avalanche initiation probability of avalanche-diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
[CrossRef]

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988, pp. 183–191.

Nightingale, N. S.

N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

Oldham, W. G.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

Oliver, J.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high-rate situations,” Nucl. Instrum. Methods (to be published).

Petroff, M.

P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).

Rarity, J. C.

Rarity, J. G.

Regan, T. O.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high-rate situations,” Nucl. Instrum. Methods (to be published).

Ridley, K. D.

Ripamonti, G.

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 1–5 (1991).
[CrossRef]

See, for example, S. Cova, G. Ripamonti, A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).

S. Cova, A. Longini, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

Samuelson, R. R.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

Soltesz, S. I.

L.-Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single photon avalanche diode for single molecule detection,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 137.

Steinberg, A.

P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).

Sun, X.

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche photodiodes,” J. Lightwave Technol. 10, 1023–1032 (1992)
[CrossRef]

Tapster, P. R.

Thomas, J.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high-rate situations,” Nucl. Instrum. Methods (to be published).

Trottier, C.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

Trottier, C. J.

L.-Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single photon avalanche diode for single molecule detection,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 137.

Webb, P. P.

See, for example, P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 235–278 (1974).

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

Appl. Opt.

Exp. Astron.

N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

IEEE Trans. Electron Devices

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

R. J. McIntyre, “On the avalanche initiation probability of avalanche-diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
[CrossRef]

IEEE Trans. Nucl. Sci.

S. Cova, A. Longini, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

J. Lightwave Technol.

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche photodiodes,” J. Lightwave Technol. 10, 1023–1032 (1992)
[CrossRef]

Measurement

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–162 (1985).
[CrossRef]

Nucl. Instrum. Methods

See, for example, S. Cova, G. Ripamonti, A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).

RCA Rev.

See, for example, P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 235–278 (1974).

Rev. Sci. Instrum.

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 1–5 (1991).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Other

S. Cova, Diportmenti di Elettronica, Politecnico di Milano, 20133 Milan, Italy (personal communication, 1992).

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988, pp. 183–191.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb. “Photon counting modules using RCA silicon avalanche photodiodes,” preprint from CP-100933, NASA Laser Light Scattering Advanced Technology Workshop—1988 (NASA Lewis Research Center, Cleveland, Ohio, 1988)

EG&G C30902S/C30921S data sheet (EG&G Canada Ltd., Vaudreuil, Quebec, Canada).

EG&G SPCM-100/200-PQ data sheet (EG&G Canada Ltd., Vaudreuil, Quebec, Canada).

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high-rate situations,” Nucl. Instrum. Methods (to be published).

P. Kwiat, A. Steinberg, M. Petroff, P. B. Eberhard, R. Chiao, University of California, Berkeley, Berkeley, California 94720 (personal communication).

L.-Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single photon avalanche diode for single molecule detection,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Field profile of three APD structures that can be used for photon counting: (a) the SPAD (a single-photon APD) developed by Cova et al., (b) reach-through structure; (c) Slik design.

Fig. 2
Fig. 2

Breakdown probability for two types of APD as a function of the applied voltage in excess of Vb (the voltage at the onset of breakdown).

Fig. 3
Fig. 3

Single-photon detection probability as a function of discriminator threshold setting Mt (in electrons) for two types of APD.

Fig. 4
Fig. 4

Response of various APD assemblies to a step variation in light intensity (100 ns per data point): (a) Standard C30902S package (step variation in power dissipation in APD 3 mW); (b) C30902S chip mounted upon ceramic (step variation in power dissipation in APD 10 mW); (c) standard SPCM-100-PQ (step variation in power dissipation in APD 10 mW).

Fig. 5
Fig. 5

Autocorrelation function, 100 ns per point. In both cases, the counting rate was approximately 30,000 cps: (a) SPCM-100-PQ, (b) C30902-S with the new active quenching circuit.

Fig. 6
Fig. 6

Ratio of quantum efficiency times true photon rate/counting rate as a function of the counting rate for (a) an SPCM-100-passive quenching, (b) C30902S with the new active quench circuit.

Fig. 7
Fig. 7

Measured quantum efficiency: (a) New experimental process (antireflection coating at 500 nm), with no window in front of the detector; (b) standard C30902S (antireflection coating at 820 nm).

Fig. 8
Fig. 8

Schematic diagram of the active quench–active reset circuit. Vq, quenching voltage (up to 25 V); TTL, transistor–transistor logic; H.V., high voltage.

Fig. 9
Fig. 9

Waveforms measured with a C30902S and the active quench circuit: (a) Variation of voltage across the APD, (b) current flowing through the diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P b = 1 exp ( Δ V / V c ) ,
δ = 0 w α d x ,

Metrics