Abstract

Images are obtained of an object consisting of six small spheres located at different depths within a highly scattering solution of latex microspheres. Three of the spheres are opaque and three are transparent. Imaging involved measuring and discriminating between the flight times of photons diffusely transmitted through the microsphere solution. A series of images are generated by the use of light integrated over periods of time in the range from 10 to 250 ps. As expected, the highest contrast and spatial resolution are achieved by the shortest integration times. However, the transparent spheres are revealed with greater contrast and resolution than the opaque spheres.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, ed., Photon Migration in Tissues (Plenum, New York, 1989).
  2. B. Chance, ed., Time-Resolved Spectroscopy and Imaging of Tissues, Proc. Soc. Photo-Opt. Instrum. Eng.1431 (1991).
  3. J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
    [CrossRef] [PubMed]
  4. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. H. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1767, 372–383 (1992).
  5. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, Ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).
  6. N. H. Abramson, K. K. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
    [CrossRef] [PubMed]
  7. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  8. K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond-harmonic-generation cross-correlation time grating,” Opt. Lett. 16, 1019–1021 (1991).
    [CrossRef] [PubMed]
  9. C. Yan, J.-C. Diels, “Imaging with femtosecond pulses,” Appl. Opt. 31, 6869–6873 (1992).
    [CrossRef] [PubMed]
  10. K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992).
    [CrossRef] [PubMed]
  11. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  12. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman. “Time resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  13. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate.” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  14. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–18701991).
    [CrossRef] [PubMed]
  15. J. C. Hebden, K. S. Wong, “Time resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
    [CrossRef] [PubMed]
  16. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  17. J. C. Hebden, “Time resolved image contrast of spheres embedded in highly scattering media,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1888 (to be published).
  18. J. C. Hebden, “Evaluating the spatial resolution performance of a time resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [CrossRef] [PubMed]

1993

1992

1991

1990

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman. “Time resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

1989

Abramson, N. H.

Alfano, R. R.

Andersson-Engels, S.

Arridge, S. R.

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. H. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1767, 372–383 (1992).

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, Ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Berg, R.

Chen, C.

Chen, H.

Chen, Y.

Cope, M.

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, Ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Das, B. B.

Delpy, D. T.

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. H. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1767, 372–383 (1992).

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, Ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Diels, J.-C.

Dilworth, D.

Duncan, M. D.

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Grünbaum, F. A.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, K. S. Wong, “Time resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

J. C. Hebden, “Time resolved image contrast of spheres embedded in highly scattering media,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1888 (to be published).

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate.” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Jarlman, O.

Kohn, P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Kruger, R. A.

Leith, E.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate.” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lopez, J.

Mahon, R.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Reintjes, J.

Rudd, J.

Schweiger, M.

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. H. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1767, 372–383 (1992).

Singer, J. R.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Spears, K. K.

Sun, P.-C.

Svanberg, S.

Tankersley, L. L.

Valdmanis, J.

van der Zee, P.

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, Ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Vossler, G.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate.” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wong, K. S.

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Xing, Q.

Yan, C.

Yoo, K. M.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate.” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zubelli, J. P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Med. Phys.

J. C. Hebden, “Evaluating the spatial resolution performance of a time resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Science

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate.” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Other

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. H. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1767, 372–383 (1992).

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, Ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

B. Chance, ed., Photon Migration in Tissues (Plenum, New York, 1989).

B. Chance, ed., Time-Resolved Spectroscopy and Imaging of Tissues, Proc. Soc. Photo-Opt. Instrum. Eng.1431 (1991).

J. C. Hebden, “Time resolved image contrast of spheres embedded in highly scattering media,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1888 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Highly scattering object consisting of six glass beads suspended on a wire frame within a plastic box filled with a solution of latex microspheres.

Fig. 2
Fig. 2

Continuous source image of the scattering object.

Fig. 3
Fig. 3

Experimental time-resolved imaging system. ND, neutral density.

Fig. 4
Fig. 4

Time-resolved images of the scattering object for (left to right) Δt = 10, 20, 30, and 40 ps (top row); Δt = 50, 75, 100, and 125 ps (middle row); Δt = 150, 175, 200, and 250 ps (bottom row).

Metrics