Abstract

Storage capacity of a volume is derived based on the space–bandwidth products of angularly multiplexed holograms and by considering their diffraction efficiency and cross-talk limitations. An erasable medium of Fe:LiNbO3 (10 mm × 10 mm × 2 mm) is simulated that yields a capacity of ~26 Gbits for 95 holograms, each with an efficiency of ~10−4, for a total of ~ −31-dB cross talk. The recording time is estimated at 0.7 s (assuming 103 W/m2 and λ = 0.5 μm). A nonerasable dichromated gelatin medium 10 mm × 10 mm × 0.025 mm is also analyzed that yields a capacity of ~3.3 Gbits for 11 holograms with efficiency of 0.09 and ~ −25-dB cross talk.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [Crossref]
  2. D. von der Linde, A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
    [Crossref]
  3. K. Blotekjaer, “Limitations on holographic storage capacity of photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979).
    [Crossref] [PubMed]
  4. M. P. Petrov, S. I. Stepanov, A. A. Kamshilin, “Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals,” Opt. Laser Technol. 11, 149–151 (1979).
    [Crossref]
  5. H. Kiemle, “Consideration on holographic memories in the gigabyte region,” Appl. Opt. 13, 803–807 (1974).
    [Crossref] [PubMed]
  6. J. E. Weaver, T. K. Gaylord, “Evaluation experiments on holographic storage of binary data in electro-optic crystals,” Opt. Eng. 20, 404–411 (1981).
  7. N. W. Carlson, L. J. Rothberg, A. G. Yodh, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8, 483–485 (1983).
    [Crossref] [PubMed]
  8. S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon-based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [Crossref] [PubMed]
  9. M. E. Marhic, “Storage limit of two-photon-based three-dimensional memories with parallel access,” Opt. Lett. 16, 1272–1273 (1991).
    [Crossref] [PubMed]
  10. U. P. Wild, S. E. Bucher, F. A. Burkhalter, “Hole burning, Stark effect, and data storage,” Appl. Opt. 24, 1526–1530 (1985).
    [Crossref] [PubMed]
  11. A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
    [Crossref]
  12. A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
    [Crossref]
  13. A. Kutanov, B. Abdrisaev, S. Dordoev, “Holographic-disk-based optical neural network,” Opt. Lett. 17, 952–954 (1992).
    [Crossref] [PubMed]
  14. F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
    [Crossref]
  15. O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1974).
    [Crossref]
  16. E. Okamoto, H. Ikeo, K. Muto, “Holographic storage in U-doped LiNb03,” Appl. Opt. 14, 2453–2455 (1975).
    [Crossref] [PubMed]
  17. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
    [Crossref]
  18. J. C. Palais, J. M. Watson, S. A. Morrison, “Compact holographic storage and projection of two-dimensional movies,” Opt. Eng. 15, 173–179 (1976).
  19. R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
    [Crossref]
  20. J. M. Moran, I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
    [Crossref] [PubMed]
  21. J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
    [Crossref]
  22. S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, F. Hache, G. C. Bjorklund, W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett. 17, 1107–1109 (1992).
    [Crossref] [PubMed]
  23. W. J. Burke, P. Sheng, “Cross-talk noise from multiple thick-phase holograms,” J. Appl. Phys. 48, 681–685 (1977).
    [Crossref]
  24. H. Lee, “Cross-talk effects in multiplexed volume holograms,” Opt. Lett. 13, 874–876 (1988).
    [Crossref] [PubMed]
  25. A. Chiou, “Anisotropic cross talk in an optical interconnection by using a self-pumped phase-conjugate mirror at the Fourier plane,” Opt. Lett. 17, 1018–1020 (1992).
    [Crossref] [PubMed]
  26. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [Crossref] [PubMed]
  27. J. Hong, D. Psaltis, “Storage capacity of holographic associative memories,” Opt. Lett. 11, 812–814 (1986).
    [Crossref] [PubMed]
  28. A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
    [Crossref] [PubMed]
  29. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
    [Crossref] [PubMed]
  30. K. Rastani, W. M. Hubbard, “Large interconnects in photorefractives: grating erasure problem and a proposed solution,” Appl. Opt. 31, 598–605 (1992).
    [Crossref] [PubMed]
  31. M. Miteva, “Influence of the readout light on the holographic storage in Bi12SiO20 monocrystals,” Opt. Commun. 48, 85–88 (1983).
    [Crossref]
  32. S. Wu, Q. Song, A. Mayers, D. A. Gregory, F. T. S. Yu, “Reconfigurable interconnections using photorefractive holograms,” Appl. Opt. 29, 1118–1125 (1990).
    [Crossref] [PubMed]
  33. H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimum cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
    [Crossref]
  34. D. Psaltis, X. Gu, D. Brady, “Fractal sampling grids for holographic interconnections,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, pp. 70–76 (1988).
  35. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  36. E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
    [Crossref]
  37. A. M. Glass, J. Strait, “The photorefractive effect in semiconductors,” in Photorefractive Materials and Their Applications I, P. Gunter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 237–262.
    [Crossref]
  38. R. V. Johnson, A. R. Tanguay, “Stratified volume holographic optical elements,” Opt. Lett. 13, 189–191 (1988).
    [Crossref] [PubMed]

1992 (5)

1991 (3)

1990 (2)

1989 (3)

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimum cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
[Crossref]

A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
[Crossref] [PubMed]

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

1988 (2)

1987 (1)

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
[Crossref]

1986 (1)

1985 (2)

J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
[Crossref]

U. P. Wild, S. E. Bucher, F. A. Burkhalter, “Hole burning, Stark effect, and data storage,” Appl. Opt. 24, 1526–1530 (1985).
[Crossref] [PubMed]

1983 (2)

N. W. Carlson, L. J. Rothberg, A. G. Yodh, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8, 483–485 (1983).
[Crossref] [PubMed]

M. Miteva, “Influence of the readout light on the holographic storage in Bi12SiO20 monocrystals,” Opt. Commun. 48, 85–88 (1983).
[Crossref]

1982 (1)

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[Crossref]

1981 (1)

J. E. Weaver, T. K. Gaylord, “Evaluation experiments on holographic storage of binary data in electro-optic crystals,” Opt. Eng. 20, 404–411 (1981).

1979 (2)

K. Blotekjaer, “Limitations on holographic storage capacity of photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979).
[Crossref] [PubMed]

M. P. Petrov, S. I. Stepanov, A. A. Kamshilin, “Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals,” Opt. Laser Technol. 11, 149–151 (1979).
[Crossref]

1977 (1)

W. J. Burke, P. Sheng, “Cross-talk noise from multiple thick-phase holograms,” J. Appl. Phys. 48, 681–685 (1977).
[Crossref]

1976 (1)

J. C. Palais, J. M. Watson, S. A. Morrison, “Compact holographic storage and projection of two-dimensional movies,” Opt. Eng. 15, 173–179 (1976).

1975 (3)

E. Okamoto, H. Ikeo, K. Muto, “Holographic storage in U-doped LiNb03,” Appl. Opt. 14, 2453–2455 (1975).
[Crossref] [PubMed]

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[Crossref]

D. von der Linde, A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[Crossref]

1974 (3)

H. Kiemle, “Consideration on holographic memories in the gigabyte region,” Appl. Opt. 13, 803–807 (1974).
[Crossref] [PubMed]

F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
[Crossref]

O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1974).
[Crossref]

1973 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1963 (1)

Abdrisaev, B.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[Crossref]

Bjorklund, G. C.

Blotekjaer, K.

Brady, D.

D. Psaltis, X. Gu, D. Brady, “Fractal sampling grids for holographic interconnections,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, pp. 70–76 (1988).

Bucher, S. E.

Burke, W. J.

W. J. Burke, P. Sheng, “Cross-talk noise from multiple thick-phase holograms,” J. Appl. Phys. 48, 681–685 (1977).
[Crossref]

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[Crossref]

Burkhalter, F. A.

Carlson, N. W.

Chiou, A.

Dordoev, S.

Esener, S.

Gaylord, T. K.

J. E. Weaver, T. K. Gaylord, “Evaluation experiments on holographic storage of binary data in electro-optic crystals,” Opt. Eng. 20, 404–411 (1981).

Glass, A. M.

D. von der Linde, A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[Crossref]

A. M. Glass, J. Strait, “The photorefractive effect in semiconductors,” in Photorefractive Materials and Their Applications I, P. Gunter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 237–262.
[Crossref]

Goggin, S. D. D.

Gregory, D. A.

Gu, X.

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimum cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
[Crossref]

D. Psaltis, X. Gu, D. Brady, “Fractal sampling grids for holographic interconnections,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, pp. 70–76 (1988).

Gulanyan, E. Kh.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
[Crossref]

Hache, F.

Hermosin, A.

F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
[Crossref]

Hong, J.

Hubbard, W. M.

Hunter, S.

Ikeo, H.

Johnson, K. M.

Johnson, R. V.

Kaminow, I. P.

Kamshilin, A. A.

M. P. Petrov, S. I. Stepanov, A. A. Kamshilin, “Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals,” Opt. Laser Technol. 11, 149–151 (1979).
[Crossref]

Kiamilev, F.

Kiemle, H.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kretlov, B. S.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

Kutanov, A.

Lee, H.

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimum cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
[Crossref]

H. Lee, “Cross-talk effects in multiplexed volume holograms,” Opt. Lett. 13, 874–876 (1988).
[Crossref] [PubMed]

Leyva, V.

Maniloff, E. S.

Marhic, M. E.

Marotz, J.

J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
[Crossref]

Matray, T. J.

Mayers, A.

Mayeux, C.

F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
[Crossref]

Micheron, F.

F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
[Crossref]

Mikaelian, A. L.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
[Crossref]

Mikami, O.

O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1974).
[Crossref]

Miteva, M.

M. Miteva, “Influence of the readout light on the holographic storage in Bi12SiO20 monocrystals,” Opt. Commun. 48, 85–88 (1983).
[Crossref]

Moerner, W. E.

Mok, F. H.

Moran, J. M.

Morrison, S. A.

J. C. Palais, J. M. Watson, S. A. Morrison, “Compact holographic storage and projection of two-dimensional movies,” Opt. Eng. 15, 173–179 (1976).

Muto, K.

Nicolas, J.

F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
[Crossref]

Okamoto, E.

Palais, J. C.

J. C. Palais, J. M. Watson, S. A. Morrison, “Compact holographic storage and projection of two-dimensional movies,” Opt. Eng. 15, 173–179 (1976).

Parthenopoulos, D. A.

Petrov, M. P.

M. P. Petrov, S. I. Stepanov, A. A. Kamshilin, “Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals,” Opt. Laser Technol. 11, 149–151 (1979).
[Crossref]

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[Crossref]

Potapova, I. V.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

Prokopenko, S. A.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
[Crossref]

Psaltis, D.

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimum cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
[Crossref]

J. Hong, D. Psaltis, “Storage capacity of holographic associative memories,” Opt. Lett. 11, 812–814 (1986).
[Crossref] [PubMed]

D. Psaltis, X. Gu, D. Brady, “Fractal sampling grids for holographic interconnections,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, pp. 70–76 (1988).

Rakuljic, G. A.

Rastani, K.

Rentzepis, P. M.

Rothberg, L. J.

Scott, J. C.

Sheng, P.

W. J. Burke, P. Sheng, “Cross-talk noise from multiple thick-phase holograms,” J. Appl. Phys. 48, 681–685 (1977).
[Crossref]

Silence, S. M.

Solymar, L.

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[Crossref]

Song, Q.

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[Crossref]

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, A. A. Kamshilin, “Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals,” Opt. Laser Technol. 11, 149–151 (1979).
[Crossref]

Stoll, H. M.

Strait, J.

A. M. Glass, J. Strait, “The photorefractive effect in semiconductors,” in Photorefractive Materials and Their Applications I, P. Gunter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 237–262.
[Crossref]

Strasser, A. C.

Syms, R. R. A.

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[Crossref]

Tackitt, M. C.

Tanguay, A. R.

Telyatnikov, A. L.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

Twieg, R. J.

van Heerden, P. J.

Vanin, A. F.

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
[Crossref]

von der Linde, D.

D. von der Linde, A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[Crossref]

Walsh, C. A.

Watson, J. M.

J. C. Palais, J. M. Watson, S. A. Morrison, “Compact holographic storage and projection of two-dimensional movies,” Opt. Eng. 15, 173–179 (1976).

Weaver, J. E.

J. E. Weaver, T. K. Gaylord, “Evaluation experiments on holographic storage of binary data in electro-optic crystals,” Opt. Eng. 20, 404–411 (1981).

Wild, U. P.

Wu, S.

Yariv, A.

Yodh, A. G.

Yu, F. T. S.

Appl. Opt. (9)

Appl. Phys. (1)

D. von der Linde, A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[Crossref]

Appl. Phys. B (1)

J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
[Crossref]

Appl. Phys. Lett. (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Am. Ceram. Soc. (1)

F. Micheron, C. Mayeux, A. Hermosin, J. Nicolas, “Holographic storage in quadratic PLZT ceramics,” J. Am. Ceram. Soc. 57, 306–308 (1974).
[Crossref]

J. Appl. Phys. (3)

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[Crossref]

H. Lee, X. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimum cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
[Crossref]

W. J. Burke, P. Sheng, “Cross-talk noise from multiple thick-phase holograms,” J. Appl. Phys. 48, 681–685 (1977).
[Crossref]

Opt. Commun. (3)

M. Miteva, “Influence of the readout light on the holographic storage in Bi12SiO20 monocrystals,” Opt. Commun. 48, 85–88 (1983).
[Crossref]

O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1974).
[Crossref]

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[Crossref]

Opt. Eng. (2)

J. C. Palais, J. M. Watson, S. A. Morrison, “Compact holographic storage and projection of two-dimensional movies,” Opt. Eng. 15, 173–179 (1976).

J. E. Weaver, T. K. Gaylord, “Evaluation experiments on holographic storage of binary data in electro-optic crystals,” Opt. Eng. 20, 404–411 (1981).

Opt. Laser Technol. (1)

M. P. Petrov, S. I. Stepanov, A. A. Kamshilin, “Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals,” Opt. Laser Technol. 11, 149–151 (1979).
[Crossref]

Opt. Lett. (11)

N. W. Carlson, L. J. Rothberg, A. G. Yodh, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8, 483–485 (1983).
[Crossref] [PubMed]

M. E. Marhic, “Storage limit of two-photon-based three-dimensional memories with parallel access,” Opt. Lett. 16, 1272–1273 (1991).
[Crossref] [PubMed]

A. Kutanov, B. Abdrisaev, S. Dordoev, “Holographic-disk-based optical neural network,” Opt. Lett. 17, 952–954 (1992).
[Crossref] [PubMed]

S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, F. Hache, G. C. Bjorklund, W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett. 17, 1107–1109 (1992).
[Crossref] [PubMed]

H. Lee, “Cross-talk effects in multiplexed volume holograms,” Opt. Lett. 13, 874–876 (1988).
[Crossref] [PubMed]

A. Chiou, “Anisotropic cross talk in an optical interconnection by using a self-pumped phase-conjugate mirror at the Fourier plane,” Opt. Lett. 17, 1018–1020 (1992).
[Crossref] [PubMed]

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[Crossref] [PubMed]

J. Hong, D. Psaltis, “Storage capacity of holographic associative memories,” Opt. Lett. 11, 812–814 (1986).
[Crossref] [PubMed]

A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
[Crossref] [PubMed]

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
[Crossref] [PubMed]

R. V. Johnson, A. R. Tanguay, “Stratified volume holographic optical elements,” Opt. Lett. 13, 189–191 (1988).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (2)

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, S. A. Prokopenko, “Holographic disk for data storage,” Sov. J. Quantum Electron. 17, 680–686 (1987).
[Crossref]

A. L. Mikaelian, A. F. Vanin, E. Kh. Gulanyan, B. S. Kretlov, I. V. Potapova, A. L. Telyatnikov, “Increase in the data capacity of holographic disks carrying one-dimensional holograms,” Sov. J. Quantum Electron. 19, 1247–1250 (1989).
[Crossref]

Other (2)

D. Psaltis, X. Gu, D. Brady, “Fractal sampling grids for holographic interconnections,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, pp. 70–76 (1988).

A. M. Glass, J. Strait, “The photorefractive effect in semiconductors,” in Photorefractive Materials and Their Applications I, P. Gunter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 237–262.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Holographic storage medium. Recording is through interfering a write beam carrying information with a reference beam. A read beam satisfying the Bragg condition reconstructs the conjugate of the write beam. The angle that each beam makes with the z axis is θ m . (b) Phase-matching diagram for the mth hologram relating k r ( m ), the reference beam wave vector, k w ( m ), the write beam wave vector, and K g ( m ), the grating wave vector. Also shown is the problem of cross talk; a read beam k r ( m −1) is diffracted by the grating K g ( m ) in the direction of kcrosstalk. The magnitude of this cross talk depends on Δk.

Fig. 2
Fig. 2

Geometry of the angularly multiplexed holograms in the yz plane. The regions of selectivity with widths Δ m are shaded.

Fig. 3
Fig. 3

(a) Angular selectivity width Δ m as a function of Bragg angle θ m for a 2-mm-thick Fe:LiNbO3 crystal (see text for details); (b) capacity per hologram (Mbits) with B = 2000 lines/mm and L = 1 cm; (c) sum of the capacities (Gbits) of the holograms up to θ m .

Fig. 4
Fig. 4

(a) Plot of η as a function of Δθ m for the Fe:LiNbO3 crystal with θ m = 3°, 10°, 20°, and 30°, from wide to narrow, respectively (d = 2 mm); (b) same as (a) for θ m = 10° except that d = 1 cm.

Fig. 5
Fig. 5

(a) Angular selectivity width Δ m as a function of Bragg angle θ m for a 25-μm-thick DCG example (see text for details), (b) capacity per hologram (Mbits) with B = 2000 lines/mm and L = 1 cm, (c) sum of the capacities (Gbits) of the holograms up to θ m .

Fig. 6
Fig. 6

(a) Plot of η as a function of θ m for the DCG example with θ m = 3°, 15.6°, 20.2°, and 29.6°, from wide to narrow, respectively (d = 25 μm); (b) same as (a) for θ m = 29.6° except that d = 100 μm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k r ( m ) = k w ( m ) K g ( m ) ,
2 Λ m sin θ m = λ,
N m = L 1 Λ m ,
c m = L B N m = L 2 B 1 Λ m ( bits ) ,
C = m = 1 m = M c m .
η m = υ m 2 sin c 2 ( ξ m 2 + υ m 2 ) 1 / 2 ,
υ m = κ m d cos θ m ,
ξ m = Δ θ m 2 π λ n d sin θ m .
Δ m = 1 n sin θ m [ ( λ d ) 2 ( Δ n cos θ m ) 2 ] 1 / 2 .
Δ m λ n d sin θ m .
θ m + 1 = θ m + Δ m .
η c = m = 1 , θ m θ s m = M η m .
τ R = τ d ( 1 + 4 π 2 μτ k B T e Λ m 2 ) .

Metrics