P. Oskoui-Fard, H. Sark, “Tomographic image reconstruction using the theory of convex projections,” IEEE Trans. Med. Imag. 7, 45–58 (1988).

[CrossRef]

G. W. Faris, R. L. Byer, “Three-dimensional beam-deflection tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988).

[CrossRef]
[PubMed]

O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988).

[CrossRef]

E. S. Meinel, “Maximum-entropy image restoration: Lagrange and recursive techniques,” J. Opt. Soc. Am. A 5, 25–29 (1988).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

M. Hino, T. Aono, M. Nakajima, S. Yuta, “Light emission computed tomography system for plasma diagnostics,” Appl. Opt. 26, 4742–4746 (1987).

[CrossRef]
[PubMed]

E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE Trans. Med. Imag. MI-6, 185–192 (1987).

[CrossRef]

R. M. Lewitt, G. Muehllehner, “Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation,” IEEE Trans. Med. Imag. MI-5, 16–22 (1986).

[CrossRef]

S. F. Gull, T. J. Newton, “Maximum entropy tomography,” Appl. Opt. 25, 156–160 (1986).

[CrossRef]
[PubMed]

A. B. Watson, A. Poirson, “Separable two-dimensional discrete Hartley transform,” J. Opt. Soc. Am. A 3, 2001–2004 (1986).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

K. M. Hanson, G. W. Wecksung, “Local basis function approach to computed tomography,” Appl. Opt. 24, 4028–4039 (1985).

[CrossRef]
[PubMed]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

B. P. Medoff, W. R. Brody, M. Nassi, A. Macovski, “Iterative convolution backprojection algorithms for image reconstruction from limited data,” J. Opt. Soc. Am. 73, 1493–1500 (1983).

[CrossRef]

C. I. Podilchuk, R. J. Mammone, “Step size for the general iterative image recovery algorithm,” Opt. Eng. 27, 806–811 (1983).

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

K. M. Hanson, G. W. Wecksung, “Bayesian approach to limited-angle reconstruction in computed tomography,” J. Opt. Soc. Am. 73, 1501–1509 (1983).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. MI-1, 113–121 (1982).

[CrossRef]

N. Baba, K. Murata, “Image reconstruction from limited-angle projections,” Optik 60, 327–332 (1982).

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections. Part 1. Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections. Part 2. Applications and numerical results,” IEEE Trans. Med. Imag. MI-1, 95–101 (1982).

[CrossRef]

K. C. Tam, V. Perez-Mendex, “Limited angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations,” Opt. Eng. 20, 586–589 (1981).

K. C. Tam, V. Perez-Mendez, “Tomographical imaging with limited angle input,” J. Opt. Soc. Am. 71, 582–592 (1981).

[CrossRef]

T. Sato, S. J. Norton, M. Linzer, O. Ikeda, M. Hirama, “Tomographic image reconstruction from limited projections using iterative revisions in image and transform spaces,” Appl. Opt. 20, 395–399 (1981).

[CrossRef]
[PubMed]

G. Minerbo, “MENT: a maximum entropy algorithm for reconstructing a source from projection data,” Comput. Graph. Image Process. 10, 48–68 (1979).

[CrossRef]

T. Inouye, “Image reconstruction with limited angle projection data,” IEEE Trans. Nucl. Sci. NS-26, 2666–2669 (1979).

H. S. Hou, H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. ASSP-26, 508–517 (1978).

S. F. Gull, G. J. Daniel, “Image reconstruction from incomplete and noisy data,” Nature (London) 272, 686–690 (1978).

[CrossRef]

B. R. Frieden, D. C. Wells, “Restoring with maximum entropy. III. Poisson sources and backgrounds,” J. Opt. Soc. Am. 68, 93–103 (1978).

[CrossRef]

S. J. Wernecke, L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26, 351–364 (1977).

[CrossRef]

B. R. Hunt, “Bayesian methods in nonlinear digital image restoration,” IEEE Trans. Comput. C-26, 219–229 (1977).

[CrossRef]

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. CAS-22, 735–742 (1975).

[CrossRef]

R. Gordon, G. T. Herman, “Three-dimensional reconstruction from projections: a review of algorithms,” Int. Rev. Cytol. 38, 111–151 (1974).

[CrossRef]
[PubMed]

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).

[CrossRef]

R. Gordon, “A tutorial on ART,” IEEE Trans. Nucl. Sci. NS-21, 78–93 (1974).

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]
[PubMed]

E. T. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern. SSC-4, 227–241 (1968).

[CrossRef]

R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198–217 (1956).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

H. S. Hou, H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. ASSP-26, 508–517 (1978).

N. Baba, K. Murata, “Image reconstruction from limited-angle projections,” Optik 60, 327–332 (1982).

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]
[PubMed]

R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198–217 (1956).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

S. J. Wernecke, L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26, 351–364 (1977).

[CrossRef]

S. F. Gull, G. J. Daniel, “Image reconstruction from incomplete and noisy data,” Nature (London) 272, 686–690 (1978).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).

[CrossRef]

R. Gordon, G. T. Herman, “Three-dimensional reconstruction from projections: a review of algorithms,” Int. Rev. Cytol. 38, 111–151 (1974).

[CrossRef]
[PubMed]

R. Gordon, “A tutorial on ART,” IEEE Trans. Nucl. Sci. NS-21, 78–93 (1974).

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]
[PubMed]

K. M. Hanson, G. W. Wecksung, “Local basis function approach to computed tomography,” Appl. Opt. 24, 4028–4039 (1985).

[CrossRef]
[PubMed]

K. M. Hanson, G. W. Wecksung, “Bayesian approach to limited-angle reconstruction in computed tomography,” J. Opt. Soc. Am. 73, 1501–1509 (1983).

[CrossRef]

K. M. Hanson, “Computed tomographic (CT) reconstruction from limited projection angles,” in Application of Optical Instrumentation in Medicine X, G. D. Fullerton, A. G. Haus, J. A. Mulvaney, W. S. Properzio, eds., Proc. Soc. Photo-Opt. Instrum. Eng.347, 166–173 (1982).

[CrossRef]

E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE Trans. Med. Imag. MI-6, 185–192 (1987).

[CrossRef]

R. Gordon, G. T. Herman, “Three-dimensional reconstruction from projections: a review of algorithms,” Int. Rev. Cytol. 38, 111–151 (1974).

[CrossRef]
[PubMed]

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]
[PubMed]

G. T. Herman, Image Reconstruction from Projections (Academic, New York, 1980).

H. S. Hou, H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. ASSP-26, 508–517 (1978).

B. R. Hunt, “Bayesian methods in nonlinear digital image restoration,” IEEE Trans. Comput. C-26, 219–229 (1977).

[CrossRef]

T. Inouye, “Image reconstruction with limited angle projection data,” IEEE Trans. Nucl. Sci. NS-26, 2666–2669 (1979).

E. T. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern. SSC-4, 227–241 (1968).

[CrossRef]

R. E. Snyder, R. G. Joklik, H. G. Semerjian, “Laser tomographic measurements in an unsteady jet-diffusion flame,” presented at the Annual Meeting of the American Society of Mechanical Engineers, San Francisco, Calif., 10–15 December 1989.

O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

A. Lent, “A convergent algorithm for maximum entropy image restoration, with a medical x-ray application,” in 1976 SPSE Conference Proceedings, R. Shaw, ed., (Society of Photographic Scientists and Engineers, Washington, D.C., 1977), pp. 249–257.

E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE Trans. Med. Imag. MI-6, 185–192 (1987).

[CrossRef]

R. M. Lewitt, G. Muehllehner, “Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation,” IEEE Trans. Med. Imag. MI-5, 16–22 (1986).

[CrossRef]

C. I. Podilchuk, R. J. Mammone, “Step size for the general iterative image recovery algorithm,” Opt. Eng. 27, 806–811 (1983).

O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

G. Minerbo, “MENT: a maximum entropy algorithm for reconstructing a source from projection data,” Comput. Graph. Image Process. 10, 48–68 (1979).

[CrossRef]

R. M. Lewitt, G. Muehllehner, “Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation,” IEEE Trans. Med. Imag. MI-5, 16–22 (1986).

[CrossRef]

N. Baba, K. Murata, “Image reconstruction from limited-angle projections,” Optik 60, 327–332 (1982).

O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

P. Oskoui-Fard, H. Sark, “Tomographic image reconstruction using the theory of convex projections,” IEEE Trans. Med. Imag. 7, 45–58 (1988).

[CrossRef]

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. CAS-22, 735–742 (1975).

[CrossRef]

K. C. Tam, V. Perez-Mendex, “Limited angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations,” Opt. Eng. 20, 586–589 (1981).

C. I. Podilchuk, R. J. Mammone, “Step size for the general iterative image recovery algorithm,” Opt. Eng. 27, 806–811 (1983).

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

P. Oskoui-Fard, H. Sark, “Tomographic image reconstruction using the theory of convex projections,” IEEE Trans. Med. Imag. 7, 45–58 (1988).

[CrossRef]

R. E. Snyder, R. G. Joklik, H. G. Semerjian, “Laser tomographic measurements in an unsteady jet-diffusion flame,” presented at the Annual Meeting of the American Society of Mechanical Engineers, San Francisco, Calif., 10–15 December 1989.

M. Sezan, H. Stark, “Tomographic image reconstruction from incomplete view data by convex projections and direct Fourier inversion,” IEEE Trans. Med. Imag. MI-3, 91–98 (1984).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections. Part 2. Applications and numerical results,” IEEE Trans. Med. Imag. MI-1, 95–101 (1982).

[CrossRef]

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. MI-1, 113–121 (1982).

[CrossRef]

R. E. Snyder, R. G. Joklik, H. G. Semerjian, “Laser tomographic measurements in an unsteady jet-diffusion flame,” presented at the Annual Meeting of the American Society of Mechanical Engineers, San Francisco, Calif., 10–15 December 1989.

M. Sezan, H. Stark, “Tomographic image reconstruction from incomplete view data by convex projections and direct Fourier inversion,” IEEE Trans. Med. Imag. MI-3, 91–98 (1984).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections. Part 2. Applications and numerical results,” IEEE Trans. Med. Imag. MI-1, 95–101 (1982).

[CrossRef]

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. MI-1, 113–121 (1982).

[CrossRef]

D. D. Verhoeven, “An experimental study of the performance of an optical tomography system,” in Laser Interferometry: Quantitave Analysis of Interferograms, R. J. Pryputniewicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1162, 369–377 (1990).

D. D. Verhoeven, “MART-type CT algorithms for the reconstruction of multidirectional interferometric data,” in Laser Interferometry TV: Computer-Aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1553, 376–387 (1992).

D. D. Verhoeven, “Application of computed tomography and holographic interferometry to the study of transparent media,” Rep. 38501 (Institut Frangais du Pétrole, Rueil-Malmaison, France, 1990).

D. W. Watt, C. M. Vest, “Consistent iterative convolution: a coupled approach to tomographic reconstruction,” J. Opt. Soc. Am. A 6, 44–51 (1989).

[CrossRef]

C. M. Vest, I. Prikryl, “Tomography by iterative convolution: empirical study and application to interferometry,” Appl. Opt. 23, 2433–2440 (1984).

[CrossRef]
[PubMed]

D. W. Sweeney, C. M. Vest, “Reconstruction of three-dimensional refractive index fields from multidirection interferometric data,” Appl. Opt. 12, 2649–2664 (1973).

[CrossRef]
[PubMed]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections. Part 1. Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

S. J. Wernecke, L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26, 351–364 (1977).

[CrossRef]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections. Part 1. Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

K. M. Hanson, G. W. Wecksung, “Local basis function approach to computed tomography,” Appl. Opt. 24, 4028–4039 (1985).

[CrossRef]
[PubMed]

M. Hino, T. Aono, M. Nakajima, S. Yuta, “Light emission computed tomography system for plasma diagnostics,” Appl. Opt. 26, 4742–4746 (1987).

[CrossRef]
[PubMed]

G. W. Faris, R. L. Byer, “Three-dimensional beam-deflection tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988).

[CrossRef]
[PubMed]

S. F. Gull, T. J. Newton, “Maximum entropy tomography,” Appl. Opt. 25, 156–160 (1986).

[CrossRef]
[PubMed]

D. W. Sweeney, C. M. Vest, “Reconstruction of three-dimensional refractive index fields from multidirection interferometric data,” Appl. Opt. 12, 2649–2664 (1973).

[CrossRef]
[PubMed]

T. Sato, S. J. Norton, M. Linzer, O. Ikeda, M. Hirama, “Tomographic image reconstruction from limited projections using iterative revisions in image and transform spaces,” Appl. Opt. 20, 395–399 (1981).

[CrossRef]
[PubMed]

C. M. Vest, I. Prikryl, “Tomography by iterative convolution: empirical study and application to interferometry,” Appl. Opt. 23, 2433–2440 (1984).

[CrossRef]
[PubMed]

R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198–217 (1956).

[CrossRef]

G. Minerbo, “MENT: a maximum entropy algorithm for reconstructing a source from projection data,” Comput. Graph. Image Process. 10, 48–68 (1979).

[CrossRef]

H. S. Hou, H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. ASSP-26, 508–517 (1978).

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. CAS-22, 735–742 (1975).

[CrossRef]

B. R. Hunt, “Bayesian methods in nonlinear digital image restoration,” IEEE Trans. Comput. C-26, 219–229 (1977).

[CrossRef]

S. J. Wernecke, L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26, 351–364 (1977).

[CrossRef]

E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE Trans. Med. Imag. MI-6, 185–192 (1987).

[CrossRef]

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. MI-1, 113–121 (1982).

[CrossRef]

R. M. Lewitt, G. Muehllehner, “Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation,” IEEE Trans. Med. Imag. MI-5, 16–22 (1986).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections. Part 1. Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections. Part 2. Applications and numerical results,” IEEE Trans. Med. Imag. MI-1, 95–101 (1982).

[CrossRef]

M. Sezan, H. Stark, “Tomographic image reconstruction from incomplete view data by convex projections and direct Fourier inversion,” IEEE Trans. Med. Imag. MI-3, 91–98 (1984).

[CrossRef]

P. Oskoui-Fard, H. Sark, “Tomographic image reconstruction using the theory of convex projections,” IEEE Trans. Med. Imag. 7, 45–58 (1988).

[CrossRef]

T. Inouye, “Image reconstruction with limited angle projection data,” IEEE Trans. Nucl. Sci. NS-26, 2666–2669 (1979).

R. Gordon, “A tutorial on ART,” IEEE Trans. Nucl. Sci. NS-21, 78–93 (1974).

E. T. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern. SSC-4, 227–241 (1968).

[CrossRef]

R. Gordon, G. T. Herman, “Three-dimensional reconstruction from projections: a review of algorithms,” Int. Rev. Cytol. 38, 111–151 (1974).

[CrossRef]
[PubMed]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

B. R. Frieden, D. C. Wells, “Restoring with maximum entropy. III. Poisson sources and backgrounds,” J. Opt. Soc. Am. 68, 93–103 (1978).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

B. R. Frieden, “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, 511–518 (1972).

[CrossRef]
[PubMed]

K. M. Hanson, G. W. Wecksung, “Bayesian approach to limited-angle reconstruction in computed tomography,” J. Opt. Soc. Am. 73, 1501–1509 (1983).

[CrossRef]

C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982).

[CrossRef]

B. P. Medoff, W. R. Brody, M. Nassi, A. Macovski, “Iterative convolution backprojection algorithms for image reconstruction from limited data,” J. Opt. Soc. Am. 73, 1493–1500 (1983).

[CrossRef]

K. C. Tam, V. Perez-Mendez, “Tomographical imaging with limited angle input,” J. Opt. Soc. Am. 71, 582–592 (1981).

[CrossRef]

J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am. 54, 931–936 (1964).

[CrossRef]

J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983).

[CrossRef]

D. W. Watt, C. M. Vest, “Consistent iterative convolution: a coupled approach to tomographic reconstruction,” J. Opt. Soc. Am. A 6, 44–51 (1989).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988).

[CrossRef]

E. S. Meinel, “Maximum-entropy image restoration: Lagrange and recursive techniques,” J. Opt. Soc. Am. A 5, 25–29 (1988).

[CrossRef]

A. B. Watson, A. Poirson, “Separable two-dimensional discrete Hartley transform,” J. Opt. Soc. Am. A 3, 2001–2004 (1986).

[CrossRef]

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]
[PubMed]

S. F. Gull, G. J. Daniel, “Image reconstruction from incomplete and noisy data,” Nature (London) 272, 686–690 (1978).

[CrossRef]

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).

[CrossRef]

K. C. Tam, V. Perez-Mendex, “Limited angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations,” Opt. Eng. 20, 586–589 (1981).

C. I. Podilchuk, R. J. Mammone, “Step size for the general iterative image recovery algorithm,” Opt. Eng. 27, 806–811 (1983).

N. Baba, K. Murata, “Image reconstruction from limited-angle projections,” Optik 60, 327–332 (1982).

K. M. Hanson, “Computed tomographic (CT) reconstruction from limited projection angles,” in Application of Optical Instrumentation in Medicine X, G. D. Fullerton, A. G. Haus, J. A. Mulvaney, W. S. Properzio, eds., Proc. Soc. Photo-Opt. Instrum. Eng.347, 166–173 (1982).

[CrossRef]

D. D. Verhoeven, “Application of computed tomography and holographic interferometry to the study of transparent media,” Rep. 38501 (Institut Frangais du Pétrole, Rueil-Malmaison, France, 1990).

A. Lent, “A convergent algorithm for maximum entropy image restoration, with a medical x-ray application,” in 1976 SPSE Conference Proceedings, R. Shaw, ed., (Society of Photographic Scientists and Engineers, Washington, D.C., 1977), pp. 249–257.

D. D. Verhoeven, “MART-type CT algorithms for the reconstruction of multidirectional interferometric data,” in Laser Interferometry TV: Computer-Aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1553, 376–387 (1992).

R. E. Snyder, R. G. Joklik, H. G. Semerjian, “Laser tomographic measurements in an unsteady jet-diffusion flame,” presented at the Annual Meeting of the American Society of Mechanical Engineers, San Francisco, Calif., 10–15 December 1989.

G. T. Herman, Image Reconstruction from Projections (Academic, New York, 1980).

D. D. Verhoeven, “An experimental study of the performance of an optical tomography system,” in Laser Interferometry: Quantitave Analysis of Interferograms, R. J. Pryputniewicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1162, 369–377 (1990).