Abstract

The design, analysis, and feasibility of a novel motionless-head parallel readout optical-disk system are presented. The system is designed to read data blocks distributed radially on the disk’s active surface, and it has the unique advantage that no mechanical motion of the head is required for fast access, focusing, or tracking. Data access is achieved solely through the disk rotation, and the entire memory can be read in one rotation. In principle, this permits a data rate of up to 1 Gbyte/s. The data blocks are one-dimensional Fourier-transform computer-generated holograms, each reconstructing one column of a two-dimensional output image. Owing to the information redundancy and shift invariance properties of Fourier-transform holograms, tracking and focusing servo requirements are eliminated. A holographic encoding method is developed to produce high signal-to-noise ratio reconstructions and to reduce significantly the radial alignment requirements of the recorded data bits. The optical readout system consists of only three cylindrical lenses. Two of these may be replaced by a single hybrid diffractive–refractive optical element for easier system alignment and better optical performance, i.e., reduced aberrations and improved resolution. The throughputs and retrieval times of this parallel readout optical-disk system make it well suited to a variety of parallel computing architectures, including a high-performance optoelectronic associative memory [Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86 (1990)].

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Robinson, “Grand challenge to supercomputing,” Electron. Eng. Times 37, (18September, 1989), pp. 51–54.
  2. L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des. 26, 51–54 (1989).
  3. H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).
  4. S. Hunter, F. Kiamilev, S. Esener, A. Parthenopoulos, P. Rentzepis, “Potentials of two-photon based 3-D memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [CrossRef] [PubMed]
  5. K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida, M. Sakaguchi, “Holographic disk with high data transfer rate,” Appl. Opt. 19, 944–951 (1980); L. F. Shew, J. G. Blanchard, “A binary hologram digital memory,” IEEE J. Quantum Electron. QE-5, 333–334 (1969).
    [CrossRef] [PubMed]
  6. D. Psaltis, M. Neifeld, A. Yamamura, S. Kobayashi, “Optical memory disk in information processing,” Appl. Opt. 29, 2038–2057 (1990).
    [CrossRef] [PubMed]
  7. J. Rilum, A. Tanguay, “Utilization of optical memory disk for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper M15.
  8. P. Marchand, “Systeme de lecture parallèle de disques optiques. Applications au calcul opto-électronique,” Ph.D. dissertation (Université de Haute Alsace, Mulhouse, France, 1991).
  9. P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).
  10. P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.
  11. M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
    [CrossRef] [PubMed]
  12. M. R. Feldman, C. C. Guest, “Iterative encoding of high-efficiency holograms for generation of spot arrays,” Opt. Lett. 14, 479–481 (1990).
    [CrossRef]
  13. R. Hauck, O. Bryngdahl, “Computer-generated holograms with pulse-density modulation,” J. Opt. Soc. Am. A 1, 5–10 (1984).
    [CrossRef]
  14. B. Jennison, J. Allebach, “Direct binary search computer generated holograms: an accelerated design technique and measurement of wavefront quality,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 2–9 (1989).
  15. J. Rilum, A. Tanguay, “Optical memory disk spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuK1.
  16. Apex Systems, Inc., OHMT-300 media tester specification sheet (Apex Systems, Inc., Boulder, Colo., 1989).
  17. Code V is a registered trademark of Optical Research Associates, Pasadena, Calif.
  18. K. S. Urquhart, P. Marchand, S. H. Lee, S. Esener, “Orthogonal cylindrical diffractive lens for parallel readout optical disk system,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1555, 214–223 (1991).
  19. K. S. Urquhart, H. Farhoosh, S. H. Lee, “Diffractive lenses utilizing orthogonal cylindrical Fresnel zone plates,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 184–190 (1990).
  20. K. S. Urquhart, H. Farhoosh, S. H. Lee, “Design and fabrication of orthogonal cylindrical diffractive lenses utilizing electron beam lithography,” submitted to Appl. Opt.
  21. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” MIT Tech. Rep. 854 (MIT, Cambridge, Mass., 1989).
  22. H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.
  23. See, for example, T. Kohonen, Self Organization and Associative Memory (Springer-Verlag, New York, 1984).
  24. T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
    [CrossRef]
  25. H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
    [CrossRef]
  26. H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
    [CrossRef]
  27. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. (April1987), pp. 4–22.
    [CrossRef]
  28. A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using parallel readout optical storage,” UCSD Internal Rep. (University of California, San Diego, La Jolla, Calif., 1991).
  29. A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Opto-electronic associative memory using parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5.

1990 (5)

S. Hunter, F. Kiamilev, S. Esener, A. Parthenopoulos, P. Rentzepis, “Potentials of two-photon based 3-D memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
[CrossRef] [PubMed]

D. Psaltis, M. Neifeld, A. Yamamura, S. Kobayashi, “Optical memory disk in information processing,” Appl. Opt. 29, 2038–2057 (1990).
[CrossRef] [PubMed]

M. R. Feldman, C. C. Guest, “Iterative encoding of high-efficiency holograms for generation of spot arrays,” Opt. Lett. 14, 479–481 (1990).
[CrossRef]

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

1989 (4)

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

B. Robinson, “Grand challenge to supercomputing,” Electron. Eng. Times 37, (18September, 1989), pp. 51–54.

L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des. 26, 51–54 (1989).

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).

1987 (2)

1984 (1)

1980 (1)

Allebach, J.

B. Jennison, J. Allebach, “Direct binary search computer generated holograms: an accelerated design technique and measurement of wavefront quality,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 2–9 (1989).

Allebach, J. P.

Ambs, P.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

Asai, F.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Bergh, H.

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

Bryngdahl, O.

Curran, L.

L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des. 26, 51–54 (1989).

Eneland, J.

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

Esener, S.

S. Hunter, F. Kiamilev, S. Esener, A. Parthenopoulos, P. Rentzepis, “Potentials of two-photon based 3-D memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
[CrossRef] [PubMed]

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

K. S. Urquhart, P. Marchand, S. H. Lee, S. Esener, “Orthogonal cylindrical diffractive lens for parallel readout optical disk system,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1555, 214–223 (1991).

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using parallel readout optical storage,” UCSD Internal Rep. (University of California, San Diego, La Jolla, Calif., 1991).

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Opto-electronic associative memory using parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5.

Fan, J.

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

Farhoosh, H.

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Design and fabrication of orthogonal cylindrical diffractive lenses utilizing electron beam lithography,” submitted to Appl. Opt.

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Diffractive lenses utilizing orthogonal cylindrical Fresnel zone plates,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 184–190 (1990).

Feldman, M. R.

Gresser, J.

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

Groeseneken, G.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).

Guest, C. C.

Hauck, R.

Hunter, S.

Jennison, B.

B. Jennison, J. Allebach, “Direct binary search computer generated holograms: an accelerated design technique and measurement of wavefront quality,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 2–9 (1989).

Kiamilev, F.

Kobayashi, S.

Kohonen, T.

See, for example, T. Kohonen, Self Organization and Associative Memory (Springer-Verlag, New York, 1984).

Komori, S.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Kondo, M.

Krishnamoorthy, A.

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using parallel readout optical storage,” UCSD Internal Rep. (University of California, San Diego, La Jolla, Calif., 1991).

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Opto-electronic associative memory using parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5.

Krishnamoorthy, A. V.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

Kubota, K.

Lebon, H.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).

Lee, S. H.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Design and fabrication of orthogonal cylindrical diffractive lenses utilizing electron beam lithography,” submitted to Appl. Opt.

K. S. Urquhart, P. Marchand, S. H. Lee, S. Esener, “Orthogonal cylindrical diffractive lens for parallel readout optical disk system,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1555, 214–223 (1991).

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Diffractive lenses utilizing orthogonal cylindrical Fresnel zone plates,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 184–190 (1990).

Lippmann, R. P.

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. (April1987), pp. 4–22.
[CrossRef]

Lundstrom, L.

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

Maes, H. E.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).

Marchand, P.

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

P. Marchand, “Systeme de lecture parallèle de disques optiques. Applications au calcul opto-électronique,” Ph.D. dissertation (Université de Haute Alsace, Mulhouse, France, 1991).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

K. S. Urquhart, P. Marchand, S. H. Lee, S. Esener, “Orthogonal cylindrical diffractive lens for parallel readout optical disk system,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1555, 214–223 (1991).

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Opto-electronic associative memory using parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5.

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using parallel readout optical storage,” UCSD Internal Rep. (University of California, San Diego, La Jolla, Calif., 1991).

Neifeld, M.

Nishida, N.

Nishikawa, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Ogura, T.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Ohno, T.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Ono, Y.

Orailoglu, A.

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

Parthenopoulos, A.

Psaltis, D.

Rentzepis, P.

Rilum, J.

J. Rilum, A. Tanguay, “Utilization of optical memory disk for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper M15.

J. Rilum, A. Tanguay, “Optical memory disk spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuK1.

Robinson, B.

B. Robinson, “Grand challenge to supercomputing,” Electron. Eng. Times 37, (18September, 1989), pp. 51–54.

Sakaguchi, M.

Satoh, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Seldowitz, M. A.

Sugama, S.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” MIT Tech. Rep. 854 (MIT, Cambridge, Mass., 1989).

Sweeney, D. W.

Takata, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tamura, T.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tanguay, A.

J. Rilum, A. Tanguay, “Optical memory disk spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuK1.

J. Rilum, A. Tanguay, “Utilization of optical memory disk for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper M15.

Tan-no, M.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Terada, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tokuda, T.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Urquhart, K. S.

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

K. S. Urquhart, P. Marchand, S. H. Lee, S. Esener, “Orthogonal cylindrical diffractive lens for parallel readout optical disk system,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1555, 214–223 (1991).

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Design and fabrication of orthogonal cylindrical diffractive lenses utilizing electron beam lithography,” submitted to Appl. Opt.

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Diffractive lenses utilizing orthogonal cylindrical Fresnel zone plates,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 184–190 (1990).

Witters, J.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).

Yamada, J.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Yamada, S.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Yamamura, A.

Yayla, G.

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using parallel readout optical storage,” UCSD Internal Rep. (University of California, San Diego, La Jolla, Calif., 1991).

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Opto-electronic associative memory using parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5.

Appl. Opt. (4)

Electron. Des. (1)

L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des. 26, 51–54 (1989).

Electron. Eng. Times (1)

B. Robinson, “Grand challenge to supercomputing,” Electron. Eng. Times 37, (18September, 1989), pp. 51–54.

IEEE ASSP Mag. (1)

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. (April1987), pp. 4–22.
[CrossRef]

IEEE J. Solid-State Circuits (3)

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microelectron. Reliab. (1)

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in semiconductor memories,” Microelectron. Reliab. 20, 9–57 (1989).

Opt. Lett. (1)

Other (16)

J. Rilum, A. Tanguay, “Utilization of optical memory disk for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper M15.

P. Marchand, “Systeme de lecture parallèle de disques optiques. Applications au calcul opto-électronique,” Ph.D. dissertation (Université de Haute Alsace, Mulhouse, France, 1991).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1505, 38–49 (1991).

P. Marchand, A. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Application des hologrammes synthétiques au stockage sur disque optique,” presented at Opto ‘91, Paris, March 1991.

B. Jennison, J. Allebach, “Direct binary search computer generated holograms: an accelerated design technique and measurement of wavefront quality,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 2–9 (1989).

J. Rilum, A. Tanguay, “Optical memory disk spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuK1.

Apex Systems, Inc., OHMT-300 media tester specification sheet (Apex Systems, Inc., Boulder, Colo., 1989).

Code V is a registered trademark of Optical Research Associates, Pasadena, Calif.

K. S. Urquhart, P. Marchand, S. H. Lee, S. Esener, “Orthogonal cylindrical diffractive lens for parallel readout optical disk system,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1555, 214–223 (1991).

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Diffractive lenses utilizing orthogonal cylindrical Fresnel zone plates,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 184–190 (1990).

K. S. Urquhart, H. Farhoosh, S. H. Lee, “Design and fabrication of orthogonal cylindrical diffractive lenses utilizing electron beam lithography,” submitted to Appl. Opt.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” MIT Tech. Rep. 854 (MIT, Cambridge, Mass., 1989).

H. Farhoosh, K. S. Urquhart, P. Marchand, J. Fan, S. H. Lee, A. Orailoglu, “A knowledge-based system for design of electron-beam fabricated computer generated holograms,” submitted to Appl. Opt.

See, for example, T. Kohonen, Self Organization and Associative Memory (Springer-Verlag, New York, 1984).

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using parallel readout optical storage,” UCSD Internal Rep. (University of California, San Diego, La Jolla, Calif., 1991).

A. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Opto-electronic associative memory using parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Disk data encoding. A 2-D image is sliced into 1-D columns. These columns are then 1-D Fourier transformed, and 1-D CGH’s are generated. The holograms are then radially and laterally shifted from one another and recorded on the disk’s active surface.

Fig. 2
Fig. 2

Optimal layout of the disk data blocks showing the radial and lateral shifts and the radial loss of capacity between data blocks.

Fig. 3
Fig. 3

Optical readout system. After being collimated by lens L1, the light is focused upon the disk surface by cylindrical lens L2. Cylindrical lens L3 performs the Fourier transform of the data along the radial direction, and cylindrical lens L4 images and magnifies the data along the tangential direction. A binary image is then reconstructed on the output plane.

Fig. 4
Fig. 4

Area that cylindrical lens L1 has to illuminate on the disk surface to ensure the proper reconstruction of a given 2-D image.

Fig. 5
Fig. 5

(a) Area modulation on four bits and five gray levels for the holographic encoding method. (b) One 1024 × 4 bit data block to encode a 128-pixel object.

Fig. 6
Fig. 6

Flow chart of the iterative holographic gray-level encoding method.

Fig. 7
Fig. 7

Effects of increasing the number of gray levels on the average contrast ratio of the reconstructions.

Fig. 8
Fig. 8

(a) Effect of bit alignment errors on the average contrast ratio of the reconstruction. (b) Effect of bit alignment errors on the worst-case contrast ratio of the reconstruction.

Fig. 9
Fig. 9

Replacing the two refractive cylindrical lenses (upper) by a single purely diffractive element or by a hybrid refractive–diffractive element (lower). Both diagrams show the Fourier transform along Y and imaging along X; magnification M = d2/d1 (upper) and M = fy/d′ (lower).

Fig. 10
Fig. 10

(a) Code V analysis of the double refactive lens system. (b) Code V analysis of the all-diffractive lens system. (c) Code V analysis of the hybrid diffractive–refractive lens system. The scales are 0.9, 0.6, and 0.6 for (a), (b), and (c), respectively.

Fig. 11
Fig. 11

Hybrid refractive–diffractive element. The diffractive part can be seen in the center portion of the element.

Fig. 12
Fig. 12

Experimentally recorded holograms showing the radial and tangential shifts.

Fig. 13
Fig. 13

Center portion of the reconstruction of a 128 × 128 pixel image obtained by using the refractive two lens system.

Fig. 14
Fig. 14

Detailed view of the center portion of the reconstruction.

Fig. 15
Fig. 15

Measurement of the contrast ratio of the section of one line of the reconstructed image. The bit sequence detected is 1100011.

Fig. 16
Fig. 16

Center portion of the reconstruction of a 128 × 128 pixel image obtained by using the hybrid lens system.

Fig. 17
Fig. 17

Principle of the optoelectronic associative-memory system.

Tables (1)

Tables Icon

Table 1 Performance Comparison of the Different Encoding Methods for the Disk Holograms

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

C = C T K N 2 ,
d = N T - L T N - 1 .
C R = C T N 2 K + ( N - 1 ) c + 2 s .
β = tan - 1 ( W d ) ,
1 = R cos β ,
w = L sin β ,
d x = M W ,
d y = λ f L ,
D = C R N 2 1 T ,
Δ y = y 2 tan θ 2 f ,
Δ y = f tan θ ,
P T = P d N 2 η T ,
η T = η H η D η 0 .
exp [ j π ( x 2 + y 2 ) λ f ] = exp ( j π x 2 λ f x ) exp ( j π y 2 λ f y ) .
L 2     f = 100 mm aperture of 50 × 60 mm     f / 2 illumination lens L 3     f = 200 mm aperture of 60 × 50 mm     f / 4 Fourier - transform lens L 4     f = 25.4 mm aperture of 22 × 60 mm     f / 1.15 imaging lens

Metrics