Abstract

We demonstrate experimentally the concept of the digital optical cellular image processor architecture by implementing one processing element of a prototype optical computer that includes a 54-gate processor, an instruction decoder, and electronic input–output interfaces. The processor consists of a two-dimensional (2-D) array of 54 optical logic gates implemented by use of a liquid-crystal light valve and a 2-D array of 53 subholograms to provide interconnections between gates. The interconnection hologram is fabricated by a computer-controlled optical system.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A cellular hypercube architecture for image processing,” in Applications of Digital Image Processing X, A. G. Tescher, ed., Proc. Soc Photo-Opt. Instrum. Eng.829, 331–338 (1987).
  2. K. S. Huang, “A digital optical cellular image processor (DOCIP): theory, architecture and implementation,” Ph.D. dissertation (Department of Electrical Engineering, University of Southern California, Los Angeles, Calif., 1988), USC-SIPI Rep. No. 133 [also available as Vol. 24 of World Scientific Series in Computer Science (World Scientific, Singapore, 1990)].
  3. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989).
    [CrossRef]
  4. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).
  5. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
    [CrossRef] [PubMed]
  6. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures based on binary image algebra,” in Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 19–26.
  7. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential optical logic implementation,” Appl. Opt. 23, 3455–3464 (1984); J. Opt. Soc. Am. 72, 1721 (1982).
    [CrossRef] [PubMed]
  8. A. A. Sawchuk, T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758–779 (1984).
    [CrossRef]
  9. P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.
  10. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
    [CrossRef] [PubMed]
  11. H. Bartelt, S. K. Case, “High-efficiency hybrid computer-generated hologram,” Appl. Opt. 21, 2886–2890 (1982).
    [CrossRef] [PubMed]
  12. B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures for image processing,” in IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 61–65.
  13. A. A. Sawchuk, B. K. Jenkins, “Optical cellular logic processors,” J. Opt. Soc. Am. A 2, 22 (1985).
  14. B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  15. B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
  16. B. J. Chang, “Post-processing of developed dichromated gelatin holograms,” Opt. Commun. 17, 270 (1976).
    [CrossRef]
  17. R. G. Brandes, E. E. Francois, T. A. Shankoff, “Preparation of dichromated gelatin films for holography,” Appl. Opt. 8, 2346–2348 (1969).
    [CrossRef] [PubMed]
  18. M. Chang, “Dichromated gelatin of improved optical quality,” Appl. Opt. 10, 2550–2551 (1971).
    [CrossRef] [PubMed]
  19. R. K. Curran, T. A. Shankoff, “The mechanism of hologram formation in dichromated gelatin,” Appl. Opt. 9, 1651–1657 (1970).
    [CrossRef] [PubMed]
  20. L. H. Lin, “Hologram formation in hardened dichromated gelatin films,” Appl. Opt. 8, 963–966 (1969).
    [CrossRef] [PubMed]
  21. K. M. Johnson, M. Armstrong, L. Hesselink, J. W. Goodman, “Multiple multiple-exposure hologram,” Appl. Opt. 24, 4467–4472 (1985).
    [CrossRef] [PubMed]
  22. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).
  23. K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).
  24. T. E. Bell, “Optical computing: a field in flux,” IEEE Spectrum 23, 34–57 (1986).
  25. F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.
  26. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
    [CrossRef]
  27. A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.
  28. D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.
  29. M. J. O’Callaghan, M. A. Handschy, K. Arnett, “Theory of diffraction and four-wave mixing by binary, optically addressed spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FY5.

1989 (2)

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

1988 (1)

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

1987 (1)

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).

1986 (1)

T. E. Bell, “Optical computing: a field in flux,” IEEE Spectrum 23, 34–57 (1986).

1985 (2)

1984 (3)

1983 (1)

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).

1982 (1)

1980 (1)

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).

1979 (1)

1976 (1)

B. J. Chang, “Post-processing of developed dichromated gelatin holograms,” Opt. Commun. 17, 270 (1976).
[CrossRef]

1971 (1)

1970 (1)

1969 (2)

Armstrong, M.

Arnett, K.

M. J. O’Callaghan, M. A. Handschy, K. Arnett, “Theory of diffraction and four-wave mixing by binary, optically addressed spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FY5.

Bartelt, H.

Bell, T. E.

T. E. Bell, “Optical computing: a field in flux,” IEEE Spectrum 23, 34–57 (1986).

Brandes, R. G.

Case, S. K.

Chang, B. J.

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).

B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
[CrossRef] [PubMed]

B. J. Chang, “Post-processing of developed dichromated gelatin holograms,” Opt. Commun. 17, 270 (1976).
[CrossRef]

Chang, M.

Chavel, P.

B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
[CrossRef] [PubMed]

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.

Chirovsky, L. M. F.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

Cunningham, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

Curran, R. K.

D’Asaro, L. A.

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

Forchheimer, R.

B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
[CrossRef] [PubMed]

P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.

Francois, E. E.

Glasser, I.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

Goodman, J. W.

Handschy, M. A.

M. J. O’Callaghan, M. A. Handschy, K. Arnett, “Theory of diffraction and four-wave mixing by binary, optically addressed spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FY5.

Henry, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

Hesselink, L.

Hinton, H. S.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

Huang, K. S.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).

K. S. Huang, “A digital optical cellular image processor (DOCIP): theory, architecture and implementation,” Ph.D. dissertation (Department of Electrical Engineering, University of Southern California, Los Angeles, Calif., 1988), USC-SIPI Rep. No. 133 [also available as Vol. 24 of World Scientific Series in Computer Science (World Scientific, Singapore, 1990)].

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures based on binary image algebra,” in Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 19–26.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A cellular hypercube architecture for image processing,” in Applications of Digital Image Processing X, A. G. Tescher, ed., Proc. Soc Photo-Opt. Instrum. Eng.829, 331–338 (1987).

Jared, D. A.

D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.

Jenkins, B. K.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).

A. A. Sawchuk, B. K. Jenkins, “Optical cellular logic processors,” J. Opt. Soc. Am. A 2, 22 (1985).

B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
[CrossRef] [PubMed]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential optical logic implementation,” Appl. Opt. 23, 3455–3464 (1984); J. Opt. Soc. Am. 72, 1721 (1982).
[CrossRef] [PubMed]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A cellular hypercube architecture for image processing,” in Applications of Digital Image Processing X, A. G. Tescher, ed., Proc. Soc Photo-Opt. Instrum. Eng.829, 331–338 (1987).

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures based on binary image algebra,” in Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 19–26.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.

B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures for image processing,” in IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 61–65.

Johnson, K. M.

K. M. Johnson, M. Armstrong, L. Hesselink, J. W. Goodman, “Multiple multiple-exposure hologram,” Appl. Opt. 24, 4467–4472 (1985).
[CrossRef] [PubMed]

D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.

Lentine, A. L.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

Leonard, C. D.

Lin, L. H.

McCormick, F. B.

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

Miller, D. A. B.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.

Morrison, R. L.

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

O’Callaghan, M. J.

M. J. O’Callaghan, M. A. Handschy, K. Arnett, “Theory of diffraction and four-wave mixing by binary, optically addressed spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FY5.

Sawchuk, A. A.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).

A. A. Sawchuk, B. K. Jenkins, “Optical cellular logic processors,” J. Opt. Soc. Am. A 2, 22 (1985).

A. A. Sawchuk, T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758–779 (1984).
[CrossRef]

B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
[CrossRef] [PubMed]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential optical logic implementation,” Appl. Opt. 23, 3455–3464 (1984); J. Opt. Soc. Am. 72, 1721 (1982).
[CrossRef] [PubMed]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A cellular hypercube architecture for image processing,” in Applications of Digital Image Processing X, A. G. Tescher, ed., Proc. Soc Photo-Opt. Instrum. Eng.829, 331–338 (1987).

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures based on binary image algebra,” in Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 19–26.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures for image processing,” in IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 61–65.

P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.

Shankoff, T. A.

Slagle, T. M.

D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.

Soffer, B. H.

Strand, T. C.

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential optical logic implementation,” Appl. Opt. 23, 3455–3464 (1984); J. Opt. Soc. Am. 72, 1721 (1982).
[CrossRef] [PubMed]

B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
[CrossRef] [PubMed]

A. A. Sawchuk, T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758–779 (1984).
[CrossRef]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).

P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.

Tu, C. W.

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.

Wagner, K.

D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.

Walker, S. L.

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

Wang, C. H.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

Wang, J. M.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

Weber, A. G.

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

Appl. Opt. (10)

L. H. Lin, “Hologram formation in hardened dichromated gelatin films,” Appl. Opt. 8, 963–966 (1969).
[CrossRef] [PubMed]

R. K. Curran, T. A. Shankoff, “The mechanism of hologram formation in dichromated gelatin,” Appl. Opt. 9, 1651–1657 (1970).
[CrossRef] [PubMed]

B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
[CrossRef] [PubMed]

H. Bartelt, S. K. Case, “High-efficiency hybrid computer-generated hologram,” Appl. Opt. 21, 2886–2890 (1982).
[CrossRef] [PubMed]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential optical logic implementation,” Appl. Opt. 23, 3455–3464 (1984); J. Opt. Soc. Am. 72, 1721 (1982).
[CrossRef] [PubMed]

B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984).
[CrossRef] [PubMed]

K. M. Johnson, M. Armstrong, L. Hesselink, J. W. Goodman, “Multiple multiple-exposure hologram,” Appl. Opt. 24, 4467–4472 (1985).
[CrossRef] [PubMed]

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

R. G. Brandes, E. E. Francois, T. A. Shankoff, “Preparation of dichromated gelatin films for holography,” Appl. Opt. 8, 2346–2348 (1969).
[CrossRef] [PubMed]

M. Chang, “Dichromated gelatin of improved optical quality,” Appl. Opt. 10, 2550–2551 (1971).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988).
[CrossRef]

Computer Vis. Graph. Image Process. (1)

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

IEEE Spectrum (1)

T. E. Bell, “Optical computing: a field in flux,” IEEE Spectrum 23, 34–57 (1986).

J. Opt. Soc. Am. (1)

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).

J. Opt. Soc. Am. A (2)

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).

A. A. Sawchuk, B. K. Jenkins, “Optical cellular logic processors,” J. Opt. Soc. Am. A 2, 22 (1985).

Opt. Commun. (1)

B. J. Chang, “Post-processing of developed dichromated gelatin holograms,” Opt. Commun. 17, 270 (1976).
[CrossRef]

Opt. Eng. (1)

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).

Proc. IEEE (1)

A. A. Sawchuk, T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758–779 (1984).
[CrossRef]

Other (10)

P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.

B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures for image processing,” in IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 61–65.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures based on binary image algebra,” in Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 19–26.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A cellular hypercube architecture for image processing,” in Applications of Digital Image Processing X, A. G. Tescher, ed., Proc. Soc Photo-Opt. Instrum. Eng.829, 331–338 (1987).

K. S. Huang, “A digital optical cellular image processor (DOCIP): theory, architecture and implementation,” Ph.D. dissertation (Department of Electrical Engineering, University of Southern California, Los Angeles, Calif., 1988), USC-SIPI Rep. No. 133 [also available as Vol. 24 of World Scientific Series in Computer Science (World Scientific, Singapore, 1990)].

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).

F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.

D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.

M. J. O’Callaghan, M. A. Handschy, K. Arnett, “Theory of diffraction and four-wave mixing by binary, optically addressed spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FY5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical four-connected cellular array (DOCIP-array4). Each cell (processing element) connects with its four nearest neighbor cells and itself by optical 3-D free-space interconnection. The optical interconnection unit provides both intracell and intercell interconnections. Intracell interconnections and imaging optics are omitted for clarity. The input and output sides of the optical gate array are part of the same physical device but are shown separately for clarity. An eight-connected cellular array (DOCIP-array8) would also include connections to the nearest diagonal neighbors.

Fig. 2
Fig. 2

Optical four- or eight-directed cellular hypercube (DOCIP-hypercube4 or DOCIP-hypercube8). Each cell (processing element) connects with cells in the four or eight directions at distances 1, 2, 4, 8 …, 2k by optical 3-D free interconnection.

Fig. 3
Fig. 3

DOCIP functional block diagram.

Fig. 4
Fig. 4

Circuit diagram of a single 54-gate processing element of the DOCIP-array4. All processing elements in the DOCIP-array4 are identical.

Fig. 5
Fig. 5

Experimental DOCIP system. Lens L1 images the LCLV gate output plane to the hologram plane. Beam splitter BS3 is in front of the LCLV gate input plane and combines the external input signals from the LED array with the feedback signals from the interconnection hologram. LP1 and LP2 are lens–pinhole assemblies. P1 and P2 are crossed polarizers. The hologram consists of an array of facet subholograms. Mirror M2 controls the position of point source S during the hologram exposure. After the hologram is made, BS1 and all components in the path from BS1 through LP2 to the mask at the hologram (shown as dashed lines) are not needed.

Fig. 6
Fig. 6

Experimental system for testing the LCLV uniformity. P1 and P2 are crossed polarizers. Lens L images the LCLV output to the detector D2. BS1, BS2, and BS3 are beam splitters. The polarizer P3, controlled by a rotation stage, is used to control the input light intensity of the LCLV. The photosensitive area of the LCLV is masked by two translation stages for measuring the characteristics of different regions.

Fig. 7
Fig. 7

Steady-state output versus input relationship of 49 tested points in the center region of the LCLV. Each characteristic curve corresponds to an area of 1 mm2 in the LCLV. The x and y axes of each characteristic curve represent the output and input irradiance of the LCLV, respectively.

Fig. 8
Fig. 8

Direct implementation of the circuit of Fig. 4: (a) Layout of the PSF’s on the hologram. The numbers correspond to those of Fig. 4. (b) PSF stored in each subhologram. The ordered pairs represent the (x, y)-coordinate locations of the gate inputs (image points) addressed (relative to the subhologram location).

Fig. 9
Fig. 9

Layout of outputs of the 54 gates in the camera input plane (i.e., monitor plane). The numbers correspond to those of Fig. 4.

Fig. 10
Fig. 10

Simulation results (left) and outputs (each portion) of the 54 gates of one processing element after the execution each portion of an instruction sequence: (a) The state before executing the instructions (all LED’s are off). (b) clear (reset three master–slave flip-flop memories to zero; outputs of gates 8, 10, 33, 16, 18, and 37 are dark). (c) store, complement, and dilation [store an external input x1 = 1 in Memory 1 (outputs of gates 8 and 16 have a value of one), choose its complement (output of gate 25 is zero and output of gate 27 is one), and dilate with a reference image that corresponds to the four-connected nearest-neighborhood (output of gate 49 is one)]. (d) Store the dilated result in Memory 2 (outputs of gates 16 and 18 are one). (e) store and union [store an external input x2 = 0 in Memory 3 (outputs of gates 33 and 37 are zero), and perform the union of three memories (output of gate 27 is zero and output of gate 49 is one)].

Metrics