Abstract

A fiber-optic strain gauge system for use in structural monitoring and smart-structure applications is described. The strain gauge uses a fiber-optic Bragg grating sensor to measure strain and a passive, wavelength demodulation system to determine the wavelength of the narrow-band, backreflected spectrum from the grating sensor. The fiber-optic strain gauge system permits the measurement of both static and dynamic strains with a noise-limited resolution of 0.44microstrain/Hz, a measurement dynamic range of 27.8 dB, and a bandwidth of 250 Hz.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, “Smart structures with nerves of glass,” Prog. Aerosp. Sci. 26, 289–351 (1989).
    [CrossRef]
  2. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  3. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  4. W. W. Morey, W. H. Glenn, G. Meltz, “Fiber optic Bragg-grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 98–106 (1989).
  5. A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
    [CrossRef]
  6. S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Tech. Lett. 4, 516–518 (1992).
    [CrossRef]
  7. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1987).
  8. H. W. Haslach, J. S. Sirkis, “Surface-mounted optical fiber strain sensor design,” Appl. Opt. 30, 4069–4080 (1991).
    [CrossRef] [PubMed]
  9. A. Bertholds, R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
    [CrossRef]
  10. D. C. Johnson, K. O. Hill, “Control of wavelength selectivity of power transfer in fused biconical monomode directional couplers,” Appl. Opt. 25, 3800–3803 (1986).
    [CrossRef] [PubMed]
  11. H. D. Simonson, R. Paetsch, J. R. Dunphy, “Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite,” in First European Conference on Smart Structures and Materials, B. Culshaw, P. T. Gardiner, A. McDonach, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1777, 73–76 (1992).
  12. R. M. Measures, S. Melle, K. Liu, “Wavelength demodulation Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” J. Smart Mat. Struct. 1, 36–44 (1992).
    [CrossRef]
  13. S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
    [CrossRef]

1993

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

1992

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Tech. Lett. 4, 516–518 (1992).
[CrossRef]

R. M. Measures, S. Melle, K. Liu, “Wavelength demodulation Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” J. Smart Mat. Struct. 1, 36–44 (1992).
[CrossRef]

1991

1989

1988

A. Bertholds, R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

1986

1978

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Alavic, A. T.

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Bertholds, A.

A. Bertholds, R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Coroy, T.

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

Dandliker, R.

A. Bertholds, R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Dunphy, J. R.

H. D. Simonson, R. Paetsch, J. R. Dunphy, “Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite,” in First European Conference on Smart Structures and Materials, B. Culshaw, P. T. Gardiner, A. McDonach, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1777, 73–76 (1992).

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Glenn, W. H.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, W. H. Glenn, G. Meltz, “Fiber optic Bragg-grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 98–106 (1989).

Haslach, H. W.

Hill, K. O.

D. C. Johnson, K. O. Hill, “Control of wavelength selectivity of power transfer in fused biconical monomode directional couplers,” Appl. Opt. 25, 3800–3803 (1986).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Johnson, D. C.

D. C. Johnson, K. O. Hill, “Control of wavelength selectivity of power transfer in fused biconical monomode directional couplers,” Appl. Opt. 25, 3800–3803 (1986).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Korr, S.

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

Liu, K.

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Tech. Lett. 4, 516–518 (1992).
[CrossRef]

R. M. Measures, S. Melle, K. Liu, “Wavelength demodulation Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” J. Smart Mat. Struct. 1, 36–44 (1992).
[CrossRef]

Measures, R. M.

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Tech. Lett. 4, 516–518 (1992).
[CrossRef]

R. M. Measures, S. Melle, K. Liu, “Wavelength demodulation Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” J. Smart Mat. Struct. 1, 36–44 (1992).
[CrossRef]

R. M. Measures, “Smart structures with nerves of glass,” Prog. Aerosp. Sci. 26, 289–351 (1989).
[CrossRef]

Melle, S.

R. M. Measures, S. Melle, K. Liu, “Wavelength demodulation Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” J. Smart Mat. Struct. 1, 36–44 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Tech. Lett. 4, 516–518 (1992).
[CrossRef]

Meltz, G.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, W. H. Glenn, G. Meltz, “Fiber optic Bragg-grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 98–106 (1989).

Morey, W. W.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, W. H. Glenn, G. Meltz, “Fiber optic Bragg-grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 98–106 (1989).

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1987).

Paetsch, R.

H. D. Simonson, R. Paetsch, J. R. Dunphy, “Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite,” in First European Conference on Smart Structures and Materials, B. Culshaw, P. T. Gardiner, A. McDonach, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1777, 73–76 (1992).

Simonson, H. D.

H. D. Simonson, R. Paetsch, J. R. Dunphy, “Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite,” in First European Conference on Smart Structures and Materials, B. Culshaw, P. T. Gardiner, A. McDonach, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1777, 73–76 (1992).

Sirkis, J. S.

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Electron. Lett.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

IEEE Photon. Tech. Lett.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Tech. Lett. 4, 516–518 (1992).
[CrossRef]

S. M. Melle, A. T. Alavic, S. Korr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Tech. Lett. 5, 263–266 (1993).
[CrossRef]

J. Lightwave Technol.

A. Bertholds, R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

J. Smart Mat. Struct.

R. M. Measures, S. Melle, K. Liu, “Wavelength demodulation Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” J. Smart Mat. Struct. 1, 36–44 (1992).
[CrossRef]

Opt. Lett.

Prog. Aerosp. Sci.

R. M. Measures, “Smart structures with nerves of glass,” Prog. Aerosp. Sci. 26, 289–351 (1989).
[CrossRef]

Other

W. W. Morey, W. H. Glenn, G. Meltz, “Fiber optic Bragg-grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1169, 98–106 (1989).

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1987).

H. D. Simonson, R. Paetsch, J. R. Dunphy, “Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite,” in First European Conference on Smart Structures and Materials, B. Culshaw, P. T. Gardiner, A. McDonach, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1777, 73–76 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Coordinate axes of the optical fiber.

Fig. 2
Fig. 2

Linear filtering slope for a WDS with (a) one filter and (b) two filters.

Fig. 3
Fig. 3

Transduction mechanism and system architecture for the Bragg grating strain gauge system.

Fig. 4
Fig. 4

(a) Typical backreflected spectrum from the surface-adhered Bragg grating sensor manufactured in a lo-bi fiber and interrogated by a spectrally broadband super luminescent diode. (b) Strain sensitivity of the lo-bi Bragg grating sensor.

Fig. 5
Fig. 5

Spectral width of the backreflected light from the Bragg grating sensor as a function of the longitudinal strain on the grating.

Fig. 6
Fig. 6

Filter functions for (a) an RG830 IR high-pass filter and (b) an interference with a 10-deg angle.

Fig. 7
Fig. 7

Normalized WDS output as a function of longitudinal strain on the Bragg grating sensor, where (a) WDS-1 with an RG830 filter and (b) WDS-2 with an interference filter are used.

Fig. 8
Fig. 8

Decay of vibrating beam amplitude oscillation as measured by WDS-2 with an interference filter: (a) beam vibration decay and (b) expanded view of beam vibrations.

Fig. 9
Fig. 9

Power spectra of a beam pluck as measured by (a) the WDS-2 with interference filter and (b) the resistive foil strain gauge.

Fig. 10
Fig. 10

Frequency response of the WDS system in decibels.

Tables (2)

Tables Icon

Table 1 Comparison of Filter Characteristics

Tables Icon

Table 2 Comparison of Measured and Calculated Modal Frequencies for Beam Vibration

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ ,
Δ λ B = 2 ( Λ n eff L + n eff Λ L ) Δ L ,
Δ [ 1 ( n eff ) 2 ] = 2 Δ n eff ( n eff ) 3
Λ L = Λ L ,
Δ λ B = 2 Λ { ( n eff ) 3 2 Δ [ 1 ( n eff ) 2 ] } + 2 n eff z L Λ L .
Δ [ 1 ( n eff ) 2 ] i ,
Δ [ 1 ( n eff ) 2 ] i = B i j j i = 2 , 3 j = 1 , 2 , 3 ,
j = ( 1 ν 2 ν 3 ) z ,
B i , j = ( p 11 p 12 p 13 p 12 p 22 p 23 p 13 p 23 p 33 ) .
( Δ λ B λ B ) i = ( 1 p e i ) z i = 2 , 3 ,
p e i = ( n eff ) 2 2 [ p 1 i ν i ( p i 3 + p 2 i ) ] .
Δ λ B λ B = ( 1 p e ) z .
I B ( λ ) = I 0 Re [ ( λ λ B Δ λ ) 2 ] ,
F ( λ ) = A ( λ λ 0 ) ,
I F = M M + N 0 I B ( λ ) F ( λ ) d λ ,
I R = N M + N 0 I B ( λ ) d λ .
I F = I 0 R A M M + N π 2 ( λ B λ 0 + Δ λ π ) Δ λ ,
I R = I 0 R N M + N π 2 Δ λ .
I F I R = A M N ( λ B λ 0 + Δ λ π )
I F 1 I F 2 = A B ( λ B λ 01 + Δ λ π ) ( λ 02 λ B Δ λ π ) .
Output = I F 1 I F 2 I F 1 + I F 2 ,
I F I R = A [ ( p 1 λ B 1 + p 2 λ B 2 ) λ 0 + Δ λ π ] ,

Metrics