Abstract

A multichannel thin-film optical waveguide sensor for determining aqueous biochemical concentration with a high dynamic range of measurement is proposed. The sensitivity dependence of the proposed sensor on interaction length and waveguide thickness is investigated for dye solutions and three different hemoglobin concentration levels of carboxyhemoglobins. The sensitivity is inversely proportional to the waveguide thickness while proportional to the interaction length. As a consequence the variability of the interaction length makes the proposed sensor a flexible tool for concentration measurements. Moreover, an efficient method for determining the absorption coefficient is discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, New York, 1979).
  2. S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
    [CrossRef]
  3. M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
    [CrossRef]
  4. H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent wave methane gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
    [CrossRef] [PubMed]
  5. P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
    [CrossRef]
  6. W. M. Reichert, J. T. Ives, P. A. Suci, V. Hlady, “Excitation of fluorescent emission from solutions at the surface of polymer thin-film waveguides: an integrated optics technique for the sensing of fluorescence at the polymer-solution interface,” Appl. Spectrosc. 41, 636–640 (1987).
    [CrossRef]
  7. K. Fujuwara, K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis,” Anal. Chem. 57, 1012–1016 (1985).
    [CrossRef]
  8. S. S. Saavedra, W. M. Reichert, “A flow cell for mode-specific, integrated optical waveguide spectroscopy in aqueous superstrates,” Appl. Spectrosc. 44, 1420–1423 (1990).
    [CrossRef]
  9. C. A. Villarruel, D. D. Dominguez, A. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber Optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).
  10. J. F. Giuliani, N. L. Jarvis, “A systematic investigation and characterization of interfacial hydrated n-alkane films by total internal multiple reflection,” J. Chem. Phys. 82, 1021–1024 (1985).
    [CrossRef]
  11. D. A. Stephens, P. W. Bohn, “Long path length absorption measurements in thin dielectric films,” Anal. Chem. 59, 2563–2566 (1987).
    [CrossRef]
  12. R. Narayanaswamy, F. Sevilla, “Optical fiber sensors for chemical species,” J. Phys. E 21, 10–17 (1988).
    [CrossRef]
  13. W. F. Love, L. J. Button, “Optical characteristics of fiber optic evanescent wave sensors,” in Chemical Biochemical and Environmental Applications of Fibers, R. A. Lieberman, M. T. Wlodarzyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.990, 175–180 (1988).
  14. D. S. Ballantine, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
    [CrossRef]
  15. K. Sasaki, H. Takahashi, Y. Kudo, N. Suzuki, “Determining the absorption coefficient of absorbing thin films with optical waveguides,” Appl. Opt. 19, 3018–3021 (1980).
    [CrossRef] [PubMed]
  16. J. N. Polky, J. H. Harris, “Absorption from thin-film waveguides,” J. Opt. Soc. Am. 62, 1081–1087 (1972).
    [CrossRef]
  17. A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12, 1015–1025 (1973).
    [CrossRef] [PubMed]
  18. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  19. S. T. Kirsch, “Determining the refractive index and thickness of thin films from prism coupler measurements,” Appl. Opt. 20, 2085–2089 (1981).
    [CrossRef] [PubMed]
  20. D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
    [CrossRef]

1990 (1)

1989 (1)

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

1988 (2)

R. Narayanaswamy, F. Sevilla, “Optical fiber sensors for chemical species,” J. Phys. E 21, 10–17 (1988).
[CrossRef]

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

1987 (4)

1986 (2)

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

D. S. Ballantine, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

1985 (2)

J. F. Giuliani, N. L. Jarvis, “A systematic investigation and characterization of interfacial hydrated n-alkane films by total internal multiple reflection,” J. Chem. Phys. 82, 1021–1024 (1985).
[CrossRef]

K. Fujuwara, K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis,” Anal. Chem. 57, 1012–1016 (1985).
[CrossRef]

1981 (1)

1980 (1)

1973 (2)

1972 (1)

Ballantine, D. S.

D. S. Ballantine, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

Bohn, P. W.

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

D. A. Stephens, P. W. Bohn, “Long path length absorption measurements in thin dielectric films,” Anal. Chem. 59, 2563–2566 (1987).
[CrossRef]

Burgess, L. W.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Button, L. J.

W. F. Love, L. J. Button, “Optical characteristics of fiber optic evanescent wave sensors,” in Chemical Biochemical and Environmental Applications of Fibers, R. A. Lieberman, M. T. Wlodarzyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.990, 175–180 (1988).

Dandridge, A.

C. A. Villarruel, D. D. Dominguez, A. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber Optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

DeGrandpre, M. D.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Dominguez, D. D.

C. A. Villarruel, D. D. Dominguez, A. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber Optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

Fujuwara, K.

K. Fujuwara, K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis,” Anal. Chem. 57, 1012–1016 (1985).
[CrossRef]

Fuwa, K.

K. Fujuwara, K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis,” Anal. Chem. 57, 1012–1016 (1985).
[CrossRef]

Giuliani, J. F.

J. F. Giuliani, N. L. Jarvis, “A systematic investigation and characterization of interfacial hydrated n-alkane films by total internal multiple reflection,” J. Chem. Phys. 82, 1021–1024 (1985).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, New York, 1979).

Harris, J. H.

Hlady, V.

Ives, J. T.

Jarvis, N. L.

J. F. Giuliani, N. L. Jarvis, “A systematic investigation and characterization of interfacial hydrated n-alkane films by total internal multiple reflection,” J. Chem. Phys. 82, 1021–1024 (1985).
[CrossRef]

Katzir, A.

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

Kirsch, S. T.

Kosower, E. M.

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

Kudo, Y.

Kychakoff, G.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Love, W. F.

W. F. Love, L. J. Button, “Optical characteristics of fiber optic evanescent wave sensors,” in Chemical Biochemical and Environmental Applications of Fibers, R. A. Lieberman, M. T. Wlodarzyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.990, 175–180 (1988).

Narayanaswamy, R.

R. Narayanaswamy, F. Sevilla, “Optical fiber sensors for chemical species,” J. Phys. E 21, 10–17 (1988).
[CrossRef]

Paul, P. H.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Polky, J. N.

Reichert, W. M.

Reisinger, A.

Saavedra, S. S.

Sasaki, K.

Sevilla, F.

R. Narayanaswamy, F. Sevilla, “Optical fiber sensors for chemical species,” J. Phys. E 21, 10–17 (1988).
[CrossRef]

Simhony, S.

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

Stephens, D. A.

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

D. A. Stephens, P. W. Bohn, “Long path length absorption measurements in thin dielectric films,” Anal. Chem. 59, 2563–2566 (1987).
[CrossRef]

Suci, P. A.

Suzuki, N.

Tai, H.

Takahashi, H.

Tanaka, H.

Torge, R.

Ulrich, R.

Villarruel, C. A.

C. A. Villarruel, D. D. Dominguez, A. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber Optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

Yoshino, T.

Anal. Chem. (5)

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

K. Fujuwara, K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis,” Anal. Chem. 57, 1012–1016 (1985).
[CrossRef]

D. A. Stephens, P. W. Bohn, “Long path length absorption measurements in thin dielectric films,” Anal. Chem. 59, 2563–2566 (1987).
[CrossRef]

D. S. Ballantine, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
[CrossRef]

Appl. Spectrosc. (2)

J. Chem. Phys. (1)

J. F. Giuliani, N. L. Jarvis, “A systematic investigation and characterization of interfacial hydrated n-alkane films by total internal multiple reflection,” J. Chem. Phys. 82, 1021–1024 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. E (1)

R. Narayanaswamy, F. Sevilla, “Optical fiber sensors for chemical species,” J. Phys. E 21, 10–17 (1988).
[CrossRef]

Opt. Lett. (1)

Other (3)

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, New York, 1979).

C. A. Villarruel, D. D. Dominguez, A. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber Optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

W. F. Love, L. J. Button, “Optical characteristics of fiber optic evanescent wave sensors,” in Chemical Biochemical and Environmental Applications of Fibers, R. A. Lieberman, M. T. Wlodarzyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.990, 175–180 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-sectional structure of a waveguide sensor based on evanescent field absorption and the sample chamber configuration.

Fig. 2
Fig. 2

Interaction ratio versus the waveguide thickness computed with n1 = 1.487, n2 = 1.590, and n3r = 1.34 at the TE-polarized 488-nm wavelength of the Ar laser.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup.

Fig. 4
Fig. 4

Relative intensity versus different concentration solutions [red and blue ink (percent) in distilled water] for the TE0-polarized 633-nm line of a He–Ne laser and the 488-nm line of an Ar laser. (The interaction length of the N channel is 25 mm, and the waveguide thickness is 1.761 μm.)

Fig. 5
Fig. 5

Relative intensity versus a different interaction length for five red ink solutions (percent) in distilled water at the TE0-polarized 488-nm line of an Ar laser; waveguide thickness: (a) T = 1.761 μm, (b) T= 1.167 μm.

Fig. 6
Fig. 6

Relative intensity versus a different interaction length for three different THb levels of COHb at a TE0-polarized 488-nm line of an Ar laser; waveguide thickness: (a) T = 1.761 μm, (b) T = 1.167 μm.

Fig. 7
Fig. 7

Absorption [−ln(Ps/Pw)] versus THb concentrations of COHb (in a PBS solution): (a) absorption obtained with a UV–visible spectrophotometer for three different path-length cuvettes, (b) the multichannel sensor response at three different interaction channel lengths.

Tables (2)

Tables Icon

Table 1 Determined Waveguide Parameters and Absorption Coefficients for Five Red Ink Solutions (%) in Distilled Water at the TE0 488-nm Line of the Ar Laser

Tables Icon

Table 2 Determined Waveguide Parameters and Absorption Coefficients for Three Different Levels of COHb at the TE0 488-nm Line of the Ar Laser

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

q 2 T = tan 1 ( p 1 / q 2 ) + tan 1 ( p 3 / q 2 ) + m π ( m = mode order = 0 , 1 , 2 , 3 , ) ,
p 1 = k 0 [ ( β * / k 0 ) 2 n 1 2 ] 1 / 2 = k 0 ( N e * 2 n 1 2 ) 1 / 2 , q 2 = k 0 [ n 2 2 ( β * / k 0 ) 2 ] 1 / 2 = k 0 ( n 2 2 N e * 2 ) 1 / 2 , p 3 = k 0 [ ( β * / k 0 ) 2 n 3 * 2 ] 1 / 2 = k 0 ( N e * 2 n 3 * 2 ) 1 / 2 , n 3 * = n 3 r j n 3 i = n 3 r j ( α / 2 k 0 ) , N e * = N r j N i = ( β / k 0 ) j ( β / k 0 ) ,
real k 0 T ( n 2 2 N r 2 ) 1 / 2 = tan 1 X + tan 1 Y + m π ,
X = [ ( N r 2 n 1 2 ) / ( n 2 2 N r 2 ) ] 1 / 2 Y = [ ( N r 2 n 3 r 2 ) / ( n 2 2 N r 2 ) ] 1 / 2 ;
k 0 T [ N r N i / ( n 2 2 N r 2 ) 1 / 2 ] = ( 1 / 2 ) tanh 1 X ( 1 / 2 ) tanh 1 Y ,
X = 2 N r N i / [ ( N r 2 n 1 2 ) 1 / 2 ( n 2 2 N r 2 ) 1 / 2 ] , Y = 2 [ N r N i ( n 2 2 n 3 r 2 ) n 3 r n 3 i ( n 2 2 N r 2 ) ] / [ ( n 2 2 n 3 r 2 ) ( n 2 2 N r 2 ) 1 / 2 ( N r 2 n 3 r 2 ) 1 / 2 ] .
R = N i / n 3 i = [ n 3 r ( n 2 2 N r 2 ) ( N r 2 n 1 2 ) 1 / 2 ] / { N r ( n 2 2 n 3 r 2 ) [ ( N r 2 n 3 r 2 ) 1 / 2 + ( N r 2 n 1 2 ) 1 / 2 + k 0 T ( N r 2 n 1 2 ) 1 / 2 ( N r 2 n 3 r 2 ) 1 / 2 ] } .
R = 2 β / α .
α = 2 β / R .
P s = P w exp ( 2 β L ) ,
ln ( P s 1 / P w ) = 2 β 1 L 1 ,
ln ( P s 2 / P w ) = 2 β 2 L 2 .
β = [ ln ( P s 2 / P w ) ln ( P s 1 / P w ) ] / 2 ( L 1 L 2 ) .

Metrics