Abstract

New accurate values of the imaginary part, k, of the refractive index of water at T = 22 °C, supercooled water at T = −8 °C and polycrystalline ice at T = −25 °C are reported. The k spectrum for water in the spectral region 0.65–2.5 μm is found to be in excellent agreement with those of previous studies. The k values for polycrystalline ice in the 1.44–2.50-μm region eliminate the large uncertainties existing among previously published conflicting sets of data. The imaginary part of refractive index of supercooled water shows a systematic shift of absorption peaks toward the longer wavelengths compared with that of water at warmer temperatures.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Charlock, “Cloud optics as possible stabilizing factor in climate,” J. Atmos. Sci. 38, 661–663 (1981).
    [CrossRef]
  2. R. C. J. Somerville, L. A. Remer, “Cloud optical thickness feedbacks in the CO2 climate problem,” J. Geophys. Res. 89, 9668–9672 (1984).
    [CrossRef]
  3. R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
    [CrossRef]
  4. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
    [CrossRef]
  5. J. F. B. Mitchell, W. J. Ingram, “Carbon dioxide and climate: mechanism of changes in cloud,” J. Climatol. 5, 5–21 (1992).
    [CrossRef]
  6. S. Manabe, R. J. Stouffer, “Sensitivity of a global climate model to an increase in the CO2 concentration in the atmosphere,” J. Geophys. Res. 85, 5529–5554 (1980).
    [CrossRef]
  7. J. F. B. Mitchell, “The ‘greenhouse’ effect and climate change,” Rev. Geophys. 27, 115–139 (1989).
    [CrossRef]
  8. M. E. Schlesinger, J. F. B. Mitchell, “Climate model simulations of the equilibrium climatic response to increased carbon dioxide,” Rev. Geophys. 25, 760–798 (1987).
    [CrossRef]
  9. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  10. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef] [PubMed]
  11. F. P. Reding, “The vibrational spectrum and structure of several molecular crystals at low temperature,” Ph. D. dissertation (Brown University, Providence, R. I., 1951).
  12. N. Ockman, “The infra-red and Raman spectra of ice,” Adv. Phys. 7, 199–220 (1958).
    [CrossRef]
  13. K. F. Palmer, D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
    [CrossRef]
  14. H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1161 (1975).
    [CrossRef]
  15. D. M. Wieliczka, S. Weng, M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
    [CrossRef] [PubMed]

1992

J. F. B. Mitchell, W. J. Ingram, “Carbon dioxide and climate: mechanism of changes in cloud,” J. Climatol. 5, 5–21 (1992).
[CrossRef]

1990

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

1989

1988

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[CrossRef]

1987

M. E. Schlesinger, J. F. B. Mitchell, “Climate model simulations of the equilibrium climatic response to increased carbon dioxide,” Rev. Geophys. 25, 760–798 (1987).
[CrossRef]

1984

R. C. J. Somerville, L. A. Remer, “Cloud optical thickness feedbacks in the CO2 climate problem,” J. Geophys. Res. 89, 9668–9672 (1984).
[CrossRef]

S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
[CrossRef] [PubMed]

1981

T. P. Charlock, “Cloud optics as possible stabilizing factor in climate,” J. Atmos. Sci. 38, 661–663 (1981).
[CrossRef]

1980

S. Manabe, R. J. Stouffer, “Sensitivity of a global climate model to an increase in the CO2 concentration in the atmosphere,” J. Geophys. Res. 85, 5529–5554 (1980).
[CrossRef]

1975

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1161 (1975).
[CrossRef]

1974

1973

1958

N. Ockman, “The infra-red and Raman spectra of ice,” Adv. Phys. 7, 199–220 (1958).
[CrossRef]

Charlock, T. P.

T. P. Charlock, “Cloud optics as possible stabilizing factor in climate,” J. Atmos. Sci. 38, 661–663 (1981).
[CrossRef]

Downing, H. D.

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1161 (1975).
[CrossRef]

Flatau, P. J.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Hale, G. M.

Ingram, W. J.

J. F. B. Mitchell, W. J. Ingram, “Carbon dioxide and climate: mechanism of changes in cloud,” J. Climatol. 5, 5–21 (1992).
[CrossRef]

Manabe, S.

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[CrossRef]

S. Manabe, R. J. Stouffer, “Sensitivity of a global climate model to an increase in the CO2 concentration in the atmosphere,” J. Geophys. Res. 85, 5529–5554 (1980).
[CrossRef]

Mitchell, J. F. B.

J. F. B. Mitchell, W. J. Ingram, “Carbon dioxide and climate: mechanism of changes in cloud,” J. Climatol. 5, 5–21 (1992).
[CrossRef]

J. F. B. Mitchell, “The ‘greenhouse’ effect and climate change,” Rev. Geophys. 27, 115–139 (1989).
[CrossRef]

M. E. Schlesinger, J. F. B. Mitchell, “Climate model simulations of the equilibrium climatic response to increased carbon dioxide,” Rev. Geophys. 25, 760–798 (1987).
[CrossRef]

Ockman, N.

N. Ockman, “The infra-red and Raman spectra of ice,” Adv. Phys. 7, 199–220 (1958).
[CrossRef]

Palmer, K. F.

Querry, M. R.

Reding, F. P.

F. P. Reding, “The vibrational spectrum and structure of several molecular crystals at low temperature,” Ph. D. dissertation (Brown University, Providence, R. I., 1951).

Remer, L. A.

R. C. J. Somerville, L. A. Remer, “Cloud optical thickness feedbacks in the CO2 climate problem,” J. Geophys. Res. 89, 9668–9672 (1984).
[CrossRef]

Schlesinger, M. E.

M. E. Schlesinger, J. F. B. Mitchell, “Climate model simulations of the equilibrium climatic response to increased carbon dioxide,” Rev. Geophys. 25, 760–798 (1987).
[CrossRef]

Somerville, R. C. J.

R. C. J. Somerville, L. A. Remer, “Cloud optical thickness feedbacks in the CO2 climate problem,” J. Geophys. Res. 89, 9668–9672 (1984).
[CrossRef]

Stackhouse, P. W.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Stephens, G. L.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Stouffer, R. J.

S. Manabe, R. J. Stouffer, “Sensitivity of a global climate model to an increase in the CO2 concentration in the atmosphere,” J. Geophys. Res. 85, 5529–5554 (1980).
[CrossRef]

Tsay, S. C.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Warren, S. G.

Weng, S.

Wetherald, R. T.

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[CrossRef]

Wieliczka, D. M.

Williams, D.

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1161 (1975).
[CrossRef]

K. F. Palmer, D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
[CrossRef]

Adv. Phys.

N. Ockman, “The infra-red and Raman spectra of ice,” Adv. Phys. 7, 199–220 (1958).
[CrossRef]

Appl. Opt.

J. Atmos. Sci.

T. P. Charlock, “Cloud optics as possible stabilizing factor in climate,” J. Atmos. Sci. 38, 661–663 (1981).
[CrossRef]

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

J. Climatol.

J. F. B. Mitchell, W. J. Ingram, “Carbon dioxide and climate: mechanism of changes in cloud,” J. Climatol. 5, 5–21 (1992).
[CrossRef]

J. Geophys. Res.

S. Manabe, R. J. Stouffer, “Sensitivity of a global climate model to an increase in the CO2 concentration in the atmosphere,” J. Geophys. Res. 85, 5529–5554 (1980).
[CrossRef]

R. C. J. Somerville, L. A. Remer, “Cloud optical thickness feedbacks in the CO2 climate problem,” J. Geophys. Res. 89, 9668–9672 (1984).
[CrossRef]

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1161 (1975).
[CrossRef]

J. Opt. Soc. Am.

Rev. Geophys.

J. F. B. Mitchell, “The ‘greenhouse’ effect and climate change,” Rev. Geophys. 27, 115–139 (1989).
[CrossRef]

M. E. Schlesinger, J. F. B. Mitchell, “Climate model simulations of the equilibrium climatic response to increased carbon dioxide,” Rev. Geophys. 25, 760–798 (1987).
[CrossRef]

Other

F. P. Reding, “The vibrational spectrum and structure of several molecular crystals at low temperature,” Ph. D. dissertation (Brown University, Providence, R. I., 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Imaginary part of the refractive index, k, of water: the present work (KLC, solid curves) at T = 22 °C and the PW and DW data (dashed curves) at 27 °C. (b) Standard deviation of k for water at T = 22 °C.

Fig. 2
Fig. 2

(a) Imaginary part of the refractive index of water at T = 22 °C (solid curves), supercooled water at T = −8 °C (longer-dashed curves), and polycrystalline ice at T = −25 °C (shorter-dashed curves). (b) Standard deviation of k for supercooled water at T = −8 °C.

Fig. 3
Fig. 3

(a) Imaginary part of the refractive index of polycrystalline ice at T = −25 °C from the present measurements (KLC, solid curve) and Warren's10 compilation (dashed curve). (b) Standard deviation on k for polycrystalline ice at T = −25 °C.

Tables (2)

Tables Icon

Table 1 Imaginary Part of the Refractive Index, k, and the Standard Deviation of k for Water at T = 22 °C, Supercooled Water at T = −8 °C, and Polycrystalline Ice at T = −25 °C in the Spectral Range From 4000 to 6920 cm−1

Tables Icon

Table 2 Imaginary Part of the Refractive Index, k, and the Standard Deviation of k for Water at T = 22 °C and T = −8 °C in the Spectral Range From 6940 to 15,000 cm−1

Metrics