Abstract

The process of superpolishing with Teflon laps has enabled supersmooth [<0.1 nm rms] and extremely flat (λ/100) optical surfaces to be produced on a large range of amorphous and crystalline optical materials. Stable surface conditions and the very low wear of a Teflon lap during polishing provide an opportunity to examine the effects of varying different polishing parameters. These include sample-to-lap mismatch and the influence of different polishing compounds and fluid chemistry. The results show that when large optical flats are superpolished with Teflon laps, microroughness, subsurface damage, and scattering can be minimized and reliably and consistently predicted for a wide variety of optical materials, while extremely flat surfaces are simultaneously achieved.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
    [CrossRef]
  2. G. Otte, “The use of Teflon polishers for precision optical flats,” J. Phys. E 2, 622–623 (1969).
    [CrossRef]
  3. A. J. Leistner, “Teflon polishers: their manufacture and use,” Appl. Opt. 15, 293–298 (1976).
  4. A. J. Leistner, E. G. Thwaite, F. Lesha, J. M. Bennett, “Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces,” Appl. Opt. 31, 1472–1482 (1992).
    [CrossRef] [PubMed]
  5. P. Hariharan, “Improved oblique-incidence interferometer,” Opt. Eng. 14, 257–258 (1975).
  6. J. Kross, H. Gerloff, “Optical investigations on optical glass surfaces,” in Optical Surface Technology, D. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.381, 138–149 (1983).
    [CrossRef]
  7. W. Wawrziniak, H. Patzelt, “Probleme und Lösungsansäze zur reproduzierbaren Verfahrensgestaltung beim Polieren optischer Funktionsflächen,” Feingeraetetechnik 31, 417–422 (1982).
  8. A. A. Tesar, B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1531, 80–90 (1992).
  9. F. Cooke, N. Brown, E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15, 407–415 (1976).
  10. R. N. Smartt, “The production of high quality optical surfaces on calcite,” J. Sci. Instrum. 38, 165 (1961).
    [CrossRef]
  11. G. Reiter, A. Gottwald, “Welchen Einfluss hat die Poliermittelsuspension auf den Poliervorgang,” Feinwerktechnik Messtechnik 99, 375–379 (1991).
  12. A. Kaller, “Elementarvorgänge im Wirkspalt beim Polieren von Funktionsflächen spröder optischer Medien, insbesondere von Glas,” Silikattechnik 31 (2), 35–40 (1980).
  13. A. Franks, “Materials problems in the production of high quality optical surfaces,” Mater. Sci. Eng. 19, 169–183 (1975).
    [CrossRef]

1992 (1)

1991 (1)

G. Reiter, A. Gottwald, “Welchen Einfluss hat die Poliermittelsuspension auf den Poliervorgang,” Feinwerktechnik Messtechnik 99, 375–379 (1991).

1990 (1)

L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

1982 (1)

W. Wawrziniak, H. Patzelt, “Probleme und Lösungsansäze zur reproduzierbaren Verfahrensgestaltung beim Polieren optischer Funktionsflächen,” Feingeraetetechnik 31, 417–422 (1982).

1980 (1)

A. Kaller, “Elementarvorgänge im Wirkspalt beim Polieren von Funktionsflächen spröder optischer Medien, insbesondere von Glas,” Silikattechnik 31 (2), 35–40 (1980).

1976 (2)

F. Cooke, N. Brown, E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15, 407–415 (1976).

A. J. Leistner, “Teflon polishers: their manufacture and use,” Appl. Opt. 15, 293–298 (1976).

1975 (2)

A. Franks, “Materials problems in the production of high quality optical surfaces,” Mater. Sci. Eng. 19, 169–183 (1975).
[CrossRef]

P. Hariharan, “Improved oblique-incidence interferometer,” Opt. Eng. 14, 257–258 (1975).

1969 (1)

G. Otte, “The use of Teflon polishers for precision optical flats,” J. Phys. E 2, 622–623 (1969).
[CrossRef]

1961 (1)

R. N. Smartt, “The production of high quality optical surfaces on calcite,” J. Sci. Instrum. 38, 165 (1961).
[CrossRef]

Bennett, J. M.

Brown, N.

F. Cooke, N. Brown, E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15, 407–415 (1976).

Cook, L. M.

L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

Cooke, F.

F. Cooke, N. Brown, E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15, 407–415 (1976).

Franks, A.

A. Franks, “Materials problems in the production of high quality optical surfaces,” Mater. Sci. Eng. 19, 169–183 (1975).
[CrossRef]

Fuchs, B. A.

A. A. Tesar, B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1531, 80–90 (1992).

Gerloff, H.

J. Kross, H. Gerloff, “Optical investigations on optical glass surfaces,” in Optical Surface Technology, D. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.381, 138–149 (1983).
[CrossRef]

Gottwald, A.

G. Reiter, A. Gottwald, “Welchen Einfluss hat die Poliermittelsuspension auf den Poliervorgang,” Feinwerktechnik Messtechnik 99, 375–379 (1991).

Hariharan, P.

P. Hariharan, “Improved oblique-incidence interferometer,” Opt. Eng. 14, 257–258 (1975).

Kaller, A.

A. Kaller, “Elementarvorgänge im Wirkspalt beim Polieren von Funktionsflächen spröder optischer Medien, insbesondere von Glas,” Silikattechnik 31 (2), 35–40 (1980).

Kross, J.

J. Kross, H. Gerloff, “Optical investigations on optical glass surfaces,” in Optical Surface Technology, D. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.381, 138–149 (1983).
[CrossRef]

Leistner, A. J.

Lesha, F.

Otte, G.

G. Otte, “The use of Teflon polishers for precision optical flats,” J. Phys. E 2, 622–623 (1969).
[CrossRef]

Patzelt, H.

W. Wawrziniak, H. Patzelt, “Probleme und Lösungsansäze zur reproduzierbaren Verfahrensgestaltung beim Polieren optischer Funktionsflächen,” Feingeraetetechnik 31, 417–422 (1982).

Prochnow, E.

F. Cooke, N. Brown, E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15, 407–415 (1976).

Reiter, G.

G. Reiter, A. Gottwald, “Welchen Einfluss hat die Poliermittelsuspension auf den Poliervorgang,” Feinwerktechnik Messtechnik 99, 375–379 (1991).

Smartt, R. N.

R. N. Smartt, “The production of high quality optical surfaces on calcite,” J. Sci. Instrum. 38, 165 (1961).
[CrossRef]

Tesar, A. A.

A. A. Tesar, B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1531, 80–90 (1992).

Thwaite, E. G.

Wawrziniak, W.

W. Wawrziniak, H. Patzelt, “Probleme und Lösungsansäze zur reproduzierbaren Verfahrensgestaltung beim Polieren optischer Funktionsflächen,” Feingeraetetechnik 31, 417–422 (1982).

Appl. Opt. (2)

Feingeraetetechnik (1)

W. Wawrziniak, H. Patzelt, “Probleme und Lösungsansäze zur reproduzierbaren Verfahrensgestaltung beim Polieren optischer Funktionsflächen,” Feingeraetetechnik 31, 417–422 (1982).

Feinwerktechnik Messtechnik (1)

G. Reiter, A. Gottwald, “Welchen Einfluss hat die Poliermittelsuspension auf den Poliervorgang,” Feinwerktechnik Messtechnik 99, 375–379 (1991).

J. Non-Cryst. Solids (1)

L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

J. Phys. E (1)

G. Otte, “The use of Teflon polishers for precision optical flats,” J. Phys. E 2, 622–623 (1969).
[CrossRef]

J. Sci. Instrum. (1)

R. N. Smartt, “The production of high quality optical surfaces on calcite,” J. Sci. Instrum. 38, 165 (1961).
[CrossRef]

Mater. Sci. Eng. (1)

A. Franks, “Materials problems in the production of high quality optical surfaces,” Mater. Sci. Eng. 19, 169–183 (1975).
[CrossRef]

Opt. Eng. (2)

F. Cooke, N. Brown, E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15, 407–415 (1976).

P. Hariharan, “Improved oblique-incidence interferometer,” Opt. Eng. 14, 257–258 (1975).

Silikattechnik (1)

A. Kaller, “Elementarvorgänge im Wirkspalt beim Polieren von Funktionsflächen spröder optischer Medien, insbesondere von Glas,” Silikattechnik 31 (2), 35–40 (1980).

Other (2)

J. Kross, H. Gerloff, “Optical investigations on optical glass surfaces,” in Optical Surface Technology, D. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.381, 138–149 (1983).
[CrossRef]

A. A. Tesar, B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1531, 80–90 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Oblique incidence interferometer with reflecting gratings.

Fig. 2
Fig. 2

Histograms showing the roughness of optical glasses and fused silica polished on Teflon and pitch laps with the abrasive shown (from Ref. 4).

Fig. 3
Fig. 3

Histograms showing some crystalline optical glass materials polished on a Teflon lap with the abrasives shown (from Ref. 4).

Fig. 4
Fig. 4

Surface profiles (200 μm long) of the center and edge of a 100-mm-diameter BK7 optical glass surface polished on a Teflon lap.

Fig. 5
Fig. 5

Surface profiles taken 8 and 20 mm from the edge of a 100-mm-diameter BK7 optical glass disk polished on a Teflon lap while differential loading around the edge is applied.

Fig. 6
Fig. 6

Multiple surface profiles (200 μm long) of a 100-mm-diameter BK7 optical glass disk, showing roughness in incremental distance from the edge to the center of a disk after polishing has been done with differential pressure.

Fig. 7
Fig. 7

Multiple surface profiles (200 μm long) of a 100-mm-diameter BK7 optical glass disk, showing roughness in incremental distance from the edge to the center of a disk after the polishing load was reduced from 850 to 200 g.

Fig. 8
Fig. 8

Interferogram of a pitted BK7 optical glass surface after a 17-h continuous polishing cycle with extreme drag on a Teflon lap with Ultra-Sol 200A collodial alumina.

Fig. 9
Fig. 9

(a) Surface profile of the bottom of a small depression, (b) Flattened profile of the bottom of a small depression, (c) Flat surface near the edge leading into a small depression.

Fig. 10
Fig. 10

Interferograms of polished depressions in two directions at right angles to each other.

Fig. 11
Fig. 11

Talysurf profiles of small depressions on a 100-mm-diameter BK7 optical glass surface polished on a Teflon lap under extreme drag with Ultra-Sol 200A colloidal alumina. (a) Profile corresponding to the direction of the interferogram in Fig. 10(a). (b) A more symmetric depression within the central 30-mm zone of the surface.

Fig. 12
Fig. 12

Interferogram of the surface of a 125 mm × 75 mm dense flint optical glass prism, showing the buildup and ripple effect produced by polishing on a Teflon lap with Vitrox-R cerium oxide containing La(OH)3.

Fig. 13
Fig. 13

Profile of a major buildup as shown in Fig. 12.

Fig. 14
Fig. 14

Interferogram of the same buildup as in Fig. 13.

Fig. 15
Fig. 15

Early stage of a buildup on a Zerodur surface.

Fig. 16
Fig. 16

AFM micrograph of an Ultran 30 optical glass surface polished on a Teflon lap with special Ultra-Sol 200A colloidal alumina.

Fig. 17
Fig. 17

Surface profile of the same Ultran 30 optical glass surface as shown in Fig. 16.

Fig. 18
Fig. 18

Schematic layout of a low angle optical scatterometer setup. LAS is the low angle scatter; PMT is the photomultiplier tube.

Fig. 19
Fig. 19

Low angle optical scatter measurement graphs of pitch and Teflon polished BK7 samples.

Metrics