Abstract

We present experimental evidence of the dependence of coating scatter on a substrate preparation technique for fused silica substrates. Samples included conventionally polished, superpolished, and float-polished substrates. We used scatterometry and total internal reflection microscopy to investigate the effects of substrate preparation on the performance of zirconium oxide thin films. Results indicate that scatter from coatings dominates the scatter signature of the coated optic. They also demonstrate that substrate preparation can affect the level of scatter produced in optical coatings. In addition it is observed that the substrates with the lowest scatter do not necessarily result in the coatings with the lowest scatter.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. L. Thomas, “Low-scatter, low-loss mirrors for laser gyros,” in Laser Inertial Rotation Sensors,S. Ezekial, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.157, 41–48 (1978).
  2. F. D. Orazio, W. K. Stowell, R. M. Silva, “Instrumentation of a variable angle scatterometer (VAS),” in Generation, Measurement and Control of Strag Radiation III, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.384, 123–131 (1983).
  3. W. K. Stowell, “Damage effects identified by scatter evaluation of supersmooth surfaces,”in Physics of Optical Ring Gyros, S. F. Jacobs, J. E. Killpatrick, V. E. Sanders, M. Sargent, M. O. Scully, J. H. Simpson, eds., Proc. Soc. Photo-Opt. Instrum Eng.487, 58–77 (1984).
    [CrossRef]
  4. L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).
  5. M. B. Moran, R. H. Kuo, C. D. Marrs, “Scatter intensity mapping of laser-illuminated coating defects,” Appl. Opt. 27, 957–962 (1988).
    [CrossRef] [PubMed]
  6. J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).
  7. G. R. Hostetter, D. L. Patz, H. A. Hill, C. A. Zanoni, “Measurements of scattered light from mirrors and lenses,” Appl. Opt. 7, 1383–1385 (1968).
    [PubMed]
  8. C. Leinert, D. Kluppelberg, “Stray light suppression in optical space experiments,” Appl. Opt. 13, 556–564 (1974).
    [CrossRef] [PubMed]
  9. J. P. Black, “Scatter instrumentation and design with measurement application to fused silica and air,” M. S. thesis (University of New Mexico, Albuquerque, N. Mex., 1992).
  10. C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
  11. J. M. Elson, J. P. Rahn, J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
    [CrossRef] [PubMed]
  12. R. P. Young, “Low-scatter mirror degradation by particle contamination,” Opt. Eng. 15, 516–520 (1976).
  13. P. A. Carosso, N. J. Pugel Carosso, “Role of scattering distribution functions in spacecraft contamination control practices,” Appl. Opt. 25, 1230–1234 (1986).
    [CrossRef] [PubMed]
  14. K. H. Guenther, “Nodular defects in dielectric multilayers and thick single layers,” Appl. Opt. 20, 1034–1038 (1981).
    [CrossRef] [PubMed]
  15. K. H. Guenther, “Microstructure of vapor-deposited optical coatingsx,” Appl. Opt. 23, 3806–3816 (1984).
    [CrossRef] [PubMed]
  16. B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).
  17. J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).
  18. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
  19. J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
  20. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).
  21. J. M. Bennett, J. J. Shaffer, Y. Shibano, Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
    [CrossRef] [PubMed]
  22. D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
    [CrossRef]
  23. P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).
  24. P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
    [CrossRef] [PubMed]
  25. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
    [CrossRef] [PubMed]
  26. S. N. Jabr, “Total internation reflection microscopy: inspection of surfaces of high bulk scatter materials,” Appl. Opt. 24, 1689–1692 (1985).
    [CrossRef] [PubMed]
  27. F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990).
    [CrossRef]
  28. F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
    [CrossRef]
  29. F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).
  30. S. O. Rice, “Reflection of electromagnetic waves by slightly rough surfaces,”in The Theory of Electromagnetic Waves, M. Kline, ed. (Interscience, New York, 1951;The Theory of Electromagnetic Waves, Dover, New York, 1963).
  31. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

1991 (2)

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
[CrossRef]

1990 (1)

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990).
[CrossRef]

1989 (1)

J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).

1988 (1)

1987 (1)

1986 (2)

P. A. Carosso, N. J. Pugel Carosso, “Role of scattering distribution functions in spacecraft contamination control practices,” Appl. Opt. 25, 1230–1234 (1986).
[CrossRef] [PubMed]

B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).

1985 (1)

1984 (2)

K. H. Guenther, “Microstructure of vapor-deposited optical coatingsx,” Appl. Opt. 23, 3806–3816 (1984).
[CrossRef] [PubMed]

J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).

1982 (1)

1981 (2)

1980 (2)

P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).

J. M. Elson, J. P. Rahn, J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
[CrossRef] [PubMed]

1979 (2)

C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

1977 (1)

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

1976 (1)

R. P. Young, “Low-scatter mirror degradation by particle contamination,” Opt. Eng. 15, 516–520 (1976).

1974 (2)

C. Leinert, D. Kluppelberg, “Stray light suppression in optical space experiments,” Appl. Opt. 13, 556–564 (1974).
[CrossRef] [PubMed]

L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).

1968 (1)

Bennett, J. M.

J. M. Bennett, J. J. Shaffer, Y. Shibano, Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
[CrossRef] [PubMed]

J. M. Elson, J. P. Rahn, J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
[CrossRef] [PubMed]

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).

Black, J. P.

J. P. Black, “Scatter instrumentation and design with measurement application to fused silica and air,” M. S. thesis (University of New Mexico, Albuquerque, N. Mex., 1992).

Carniglia, C. K.

F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
[CrossRef]

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990).
[CrossRef]

C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).

Carosso, P. A.

Chambers, J. P.

J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).

Church, E. L.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

DeShazer, L. G.

L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).

Donovan, T. M.

J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).

Elson, J. M.

Frank, J. B.

J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).

Gillespie, C. H.

J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).

Guenther, K. H.

Hill, H. A.

Himelinski, S. F.

J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).

Hostetter, G. R.

Irvine, K. F.

J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).

Jabr, S. N.

Jenkinson, H. A.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

Jungling, K. C.

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

Keung, K. M.

L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).

Kluppelberg, D.

Kranenberg, C. F.

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

Kuo, R. H.

Leinert, C.

Liao, B.

B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).

Lowdermilk, W. H.

Marrs, C. D.

Mattsson, L.

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

McIntyre, B.

B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).

McNeil, J. R.

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

Milam, D.

Moran, M. B.

Namba, Y.

Newman, B. E.

L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).

Orazio, F. D.

F. D. Orazio, W. K. Stowell, R. M. Silva, “Instrumentation of a variable angle scatterometer (VAS),” in Generation, Measurement and Control of Strag Radiation III, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.384, 123–131 (1983).

Patz, D. L.

Petersen, G. A.

F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
[CrossRef]

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).

Pond, B. J.

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990).
[CrossRef]

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).

Porteus, J. O.

J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).

Pugel Carosso, N. J.

Rahn, J. P.

Reicher, D. W.

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

Rice, S. O.

S. O. Rice, “Reflection of electromagnetic waves by slightly rough surfaces,”in The Theory of Electromagnetic Waves, M. Kline, ed. (Interscience, New York, 1951;The Theory of Electromagnetic Waves, Dover, New York, 1963).

Schmell, R. A.

F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
[CrossRef]

Serati, S. A.

J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).

Shaffer, J. J.

Shibano, Y.

Silva, R. M.

F. D. Orazio, W. K. Stowell, R. M. Silva, “Instrumentation of a variable angle scatterometer (VAS),” in Generation, Measurement and Control of Strag Radiation III, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.384, 123–131 (1983).

Smith, D. J.

B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).

Spiker, C. J.

J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).

Stover, J. C.

J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).

Stowell, R. S.

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

Stowell, W. K.

W. K. Stowell, “Damage effects identified by scatter evaluation of supersmooth surfaces,”in Physics of Optical Ring Gyros, S. F. Jacobs, J. E. Killpatrick, V. E. Sanders, M. Sargent, M. O. Scully, J. H. Simpson, eds., Proc. Soc. Photo-Opt. Instrum Eng.487, 58–77 (1984).
[CrossRef]

F. D. Orazio, W. K. Stowell, R. M. Silva, “Instrumentation of a variable angle scatterometer (VAS),” in Generation, Measurement and Control of Strag Radiation III, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.384, 123–131 (1983).

Temple, P. A.

P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
[CrossRef] [PubMed]

P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
[CrossRef] [PubMed]

P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).

Thomas, N. L.

N. L. Thomas, “Low-scatter, low-loss mirrors for laser gyros,” in Laser Inertial Rotation Sensors,S. Ezekial, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.157, 41–48 (1978).

Williams, F. L.

F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
[CrossRef]

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990).
[CrossRef]

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).

Young, R. P.

R. P. Young, “Low-scatter mirror degradation by particle contamination,” Opt. Eng. 15, 516–520 (1976).

Zanoni, C. A.

Zavada, J. M.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

Appl. Opt. (11)

M. B. Moran, R. H. Kuo, C. D. Marrs, “Scatter intensity mapping of laser-illuminated coating defects,” Appl. Opt. 27, 957–962 (1988).
[CrossRef] [PubMed]

G. R. Hostetter, D. L. Patz, H. A. Hill, C. A. Zanoni, “Measurements of scattered light from mirrors and lenses,” Appl. Opt. 7, 1383–1385 (1968).
[PubMed]

C. Leinert, D. Kluppelberg, “Stray light suppression in optical space experiments,” Appl. Opt. 13, 556–564 (1974).
[CrossRef] [PubMed]

P. A. Carosso, N. J. Pugel Carosso, “Role of scattering distribution functions in spacecraft contamination control practices,” Appl. Opt. 25, 1230–1234 (1986).
[CrossRef] [PubMed]

K. H. Guenther, “Nodular defects in dielectric multilayers and thick single layers,” Appl. Opt. 20, 1034–1038 (1981).
[CrossRef] [PubMed]

K. H. Guenther, “Microstructure of vapor-deposited optical coatingsx,” Appl. Opt. 23, 3806–3816 (1984).
[CrossRef] [PubMed]

J. M. Elson, J. P. Rahn, J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
[CrossRef] [PubMed]

P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
[CrossRef] [PubMed]

P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
[CrossRef] [PubMed]

S. N. Jabr, “Total internation reflection microscopy: inspection of surfaces of high bulk scatter materials,” Appl. Opt. 24, 1689–1692 (1985).
[CrossRef] [PubMed]

J. M. Bennett, J. J. Shaffer, Y. Shibano, Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
[CrossRef] [PubMed]

Laser Induced Damage in Optical Materials: 1973 (1)

L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).

Laser Induced Damage in Optical Materials: 1979 (1)

P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).

Laser Induced Damage in Optical Materials: 1985 (1)

B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).

Laser Induced Damage in Optical Materials: 1988 (1)

J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).

Laser Induced Damage in Optical Materials: 1989 (1)

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990).
[CrossRef]

Laser Induced Damage in Optical Materials: 1991 (1)

D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991).
[CrossRef]

Laser-Induced Damage in Optical Materials: 1991 (1)

F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991).
[CrossRef]

Opt. Eng. (5)

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).

R. P. Young, “Low-scatter mirror degradation by particle contamination,” Opt. Eng. 15, 516–520 (1976).

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).

Other (8)

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).

J. P. Black, “Scatter instrumentation and design with measurement application to fused silica and air,” M. S. thesis (University of New Mexico, Albuquerque, N. Mex., 1992).

N. L. Thomas, “Low-scatter, low-loss mirrors for laser gyros,” in Laser Inertial Rotation Sensors,S. Ezekial, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.157, 41–48 (1978).

F. D. Orazio, W. K. Stowell, R. M. Silva, “Instrumentation of a variable angle scatterometer (VAS),” in Generation, Measurement and Control of Strag Radiation III, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.384, 123–131 (1983).

W. K. Stowell, “Damage effects identified by scatter evaluation of supersmooth surfaces,”in Physics of Optical Ring Gyros, S. F. Jacobs, J. E. Killpatrick, V. E. Sanders, M. Sargent, M. O. Scully, J. H. Simpson, eds., Proc. Soc. Photo-Opt. Instrum Eng.487, 58–77 (1984).
[CrossRef]

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).

S. O. Rice, “Reflection of electromagnetic waves by slightly rough surfaces,”in The Theory of Electromagnetic Waves, M. Kline, ed. (Interscience, New York, 1951;The Theory of Electromagnetic Waves, Dover, New York, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the scatterometer used to take the BRDF and scatter map data. BS is the beam splitter.

Fig. 2
Fig. 2

Geometry used for the BRDF measurements. ΘB is the Brewster angle.

Fig. 3
Fig. 3

Schematic diagram of the instrument used to make the ex situ TIRM measurements.

Fig. 4
Fig. 4

BRDF measurements of a conventionally polished substrate, a float-polished substrate, and a superpolished substrate before coating was performed. Each curve represents an average of five measurements on the same sample. The spike in the data at ∼ 55° is the specular reflection of the incident beam from the surface of the sample.

Fig. 5
Fig. 5

BRDF measurements of a conventionally polished substrate, a float-polished substrate, and a superpolished substrate after coating was performed. Each curve represents an average of five measurements on the same sample. The spike in the data at ∼ 55° is the specular reflection of the incident beam from the surface of the sample.

Fig. 6
Fig. 6

Ex situ TIRM photographs taken from (a) a conventionally polished substrate, (b) a float-polished substrate, and (c) a superpolished substrate before coating was performed.

Fig. 7
Fig. 7

Ex situ TIRM photographs taken from the same three substrates shown in Fig. 6 after coating was performed.

Fig. 8
Fig. 8

High-resolution scatter map of a 7-mm-square area of a superpolished optic before coating was performed.

Fig. 9
Fig. 9

High-resolution scatter map of a 7-mm-square area of the superpolished optic after coating was performed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

BRDF = I s ( x , y , θ ) / I 0 Ω cos ( θ ) ,

Metrics