Abstract

A passive spatial light beam deflector based on a channel waveguide phased-array concept is presented. Diffraction gratings patterned by electron-beam lithography couple light into and out of the device. Phasing is achieved electro-optically with indium tin oxide/AlGaAs Shottky junctions. Discrete beam steering is first demonstrated with a 43-element rib waveguide array at an 850-nm wavelength. A sawtooth electrode keeps the device length short and the electrode surface small. Continuous deflection over a ±7.2 mrad range at a 900-nm wavelength is then reported. A set of seven sawtooth and offset electrodes permits addressing any point within this range. The beam has a width of 1.5 mrad, and the maximum modulation voltage is −8.5 V.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Dekker, New York, 1983).
  2. C. H. Bulmer, W. K. Burns, T. G. Giallorenzi, “Performance criteria and limitations of electro-optic waveguide array deflectors,” Appl. Opt. 18, 3282–3295 (1979).
    [Crossref] [PubMed]
  3. D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
    [Crossref]
  4. D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
    [Crossref]
  5. W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.
  6. T. Takamori, L. A. Coldren, J. L. Merz, “Angled etching of GaAs/AlGaAs by conventional Cl2 reactive ion etching,” Appl. Phys. Lett. 53, 2549–2551 (1988).
    [Crossref]
  7. A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
    [Crossref]
  8. T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
    [Crossref]
  9. F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
    [Crossref]
  10. P. Saunier, C. S. Tsai, I. W. Yao, L. T. Nguyen, “Electrooptic phased-array light beam deflector with application to analog-to-digital conversion,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), pp. TuC2-1–TuC2-4.
  11. Optical Beam Steering Device—PHAROS, Technol. Inf. Sheet R0130 (Defence Technology Enterprise, London, 1988).
  12. H. Sasaki, R. M. de la Rue, “Electro-optic multichannel waveguide deflector,” Electron. Lett. 13, 295–296 (1977).
    [Crossref]
  13. J. M. Stauffer, Y. Oppliger, F. Vassey, “Fabrication of optoelectronic devices on AlGaAs using electron beam lithography,” Microelectron. Eng 13, 193–196 (1991).
    [Crossref]
  14. K. Sreenivas, T. S. Rao, A. Mansingh, “Preparation and characterization of RF sputtered indium tin oxide films,” J. Appl. Phys. 57, 384–387 (1985).
    [Crossref]
  15. F. K. Reinhart, W. R. Sinclair, R. A. Logan, “Single heterostructure AlxGa1−xAs phase modulator with SnO2-doped In2O3 cladding layer,” Appl. Phys. Lett. 29, 21–23 (1976).
    [Crossref]
  16. C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
    [Crossref]
  17. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), p. 396.
  18. R. G. Hunsperger, Integrated Optics: Theory and Technology, Vol. 33 of the Springer Series in Optical Sciences (Springer-Verlag, New York, 1984), pp. 59–63.
  19. T. Tamir, Guided Wave Optoelectronics, Vol. 26 of Electronics and Photonics (Springer-Verlag, New York, 1988), pp. 7–88.
    [Crossref]
  20. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  21. Y. Ninomyia, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. 9, 791–795 (1973).
    [Crossref]
  22. F. Vasey, F. K. Reinhart, R. Houdré, J. M. Stauffer, “Continuous optical beam steering with an AlGaAs integrated phased array,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 314–316.
  23. H. Nagata, N. Komaba, K. Yamashita, “AlGaAs grating surface-emitting beam deflector with ridge structure,” IEEE Photon. Technol. Lett. 3, 222–224 (1991).
    [Crossref]
  24. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1987).
  25. J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl, Phys. Lett. 53, 1375–1377 (1988).
    [Crossref]

1991 (4)

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
[Crossref]

J. M. Stauffer, Y. Oppliger, F. Vassey, “Fabrication of optoelectronic devices on AlGaAs using electron beam lithography,” Microelectron. Eng 13, 193–196 (1991).
[Crossref]

H. Nagata, N. Komaba, K. Yamashita, “AlGaAs grating surface-emitting beam deflector with ridge structure,” IEEE Photon. Technol. Lett. 3, 222–224 (1991).
[Crossref]

1990 (1)

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

1989 (1)

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

1988 (4)

T. Takamori, L. A. Coldren, J. L. Merz, “Angled etching of GaAs/AlGaAs by conventional Cl2 reactive ion etching,” Appl. Phys. Lett. 53, 2549–2551 (1988).
[Crossref]

A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
[Crossref]

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl, Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
[Crossref]

1985 (1)

K. Sreenivas, T. S. Rao, A. Mansingh, “Preparation and characterization of RF sputtered indium tin oxide films,” J. Appl. Phys. 57, 384–387 (1985).
[Crossref]

1979 (1)

1977 (1)

H. Sasaki, R. M. de la Rue, “Electro-optic multichannel waveguide deflector,” Electron. Lett. 13, 295–296 (1977).
[Crossref]

1976 (1)

F. K. Reinhart, W. R. Sinclair, R. A. Logan, “Single heterostructure AlxGa1−xAs phase modulator with SnO2-doped In2O3 cladding layer,” Appl. Phys. Lett. 29, 21–23 (1976).
[Crossref]

1973 (1)

Y. Ninomyia, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. 9, 791–795 (1973).
[Crossref]

Abeles, J. H.

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl, Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

Baer, W.

C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
[Crossref]

Bailey, R. J.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1987).

Botez, D.

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

Bulmer, C. H.

Burns, W. K.

Coldren, L. A.

T. Takamori, L. A. Coldren, J. L. Merz, “Angled etching of GaAs/AlGaAs by conventional Cl2 reactive ion etching,” Appl. Phys. Lett. 53, 2549–2551 (1988).
[Crossref]

Craig, R.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

de la Rue, R. M.

H. Sasaki, R. M. de la Rue, “Electro-optic multichannel waveguide deflector,” Electron. Lett. 13, 295–296 (1977).
[Crossref]

Deri, R. J.

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl, Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

Donnelly, J. P.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Faist, J.

C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
[Crossref]

Giallorenzi, T. G.

Goodhue, W. D.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Gottlieb, M.

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Dekker, New York, 1983).

Gozdz, A. S.

A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), p. 396.

Houdré, R.

F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
[Crossref]

F. Vasey, F. K. Reinhart, R. Houdré, J. M. Stauffer, “Continuous optical beam steering with an AlGaAs integrated phased array,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 314–316.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology, Vol. 33 of the Springer Series in Optical Sciences (Springer-Verlag, New York, 1984), pp. 59–63.

Ireland, C. L. M.

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Dekker, New York, 1983).

Jansen, M.

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

Johnson, G. D.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Komaba, N.

H. Nagata, N. Komaba, K. Yamashita, “AlGaAs grating surface-emitting beam deflector with ridge structure,” IEEE Photon. Technol. Lett. 3, 222–224 (1991).
[Crossref]

Lee, S. F.

A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
[Crossref]

Ley, J. M.

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Dekker, New York, 1983).

Lin, P. S. D.

A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
[Crossref]

Lincoln, G. A.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Logan, R. A.

F. K. Reinhart, W. R. Sinclair, R. A. Logan, “Single heterostructure AlxGa1−xAs phase modulator with SnO2-doped In2O3 cladding layer,” Appl. Phys. Lett. 29, 21–23 (1976).
[Crossref]

Mansingh, A.

K. Sreenivas, T. S. Rao, A. Mansingh, “Preparation and characterization of RF sputtered indium tin oxide films,” J. Appl. Phys. 57, 384–387 (1985).
[Crossref]

Mawst, L. J.

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

Mehuys, D.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

Merz, J. L.

T. Takamori, L. A. Coldren, J. L. Merz, “Angled etching of GaAs/AlGaAs by conventional Cl2 reactive ion etching,” Appl. Phys. Lett. 53, 2549–2551 (1988).
[Crossref]

Nagata, H.

H. Nagata, N. Komaba, K. Yamashita, “AlGaAs grating surface-emitting beam deflector with ridge structure,” IEEE Photon. Technol. Lett. 3, 222–224 (1991).
[Crossref]

Nako, M.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Nguyen, L. T.

P. Saunier, C. S. Tsai, I. W. Yao, L. T. Nguyen, “Electrooptic phased-array light beam deflector with application to analog-to-digital conversion,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), pp. TuC2-1–TuC2-4.

Ninomyia, Y.

Y. Ninomyia, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. 9, 791–795 (1973).
[Crossref]

Nishida, T.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Nishimura, K.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Oppliger, Y.

J. M. Stauffer, Y. Oppliger, F. Vassey, “Fabrication of optoelectronic devices on AlGaAs using electron beam lithography,” Microelectron. Eng 13, 193–196 (1991).
[Crossref]

Ozawa, A.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Parke, R.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

Peterson, G.

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

Rao, T. S.

K. Sreenivas, T. S. Rao, A. Mansingh, “Preparation and characterization of RF sputtered indium tin oxide films,” J. Appl. Phys. 57, 384–387 (1985).
[Crossref]

Rauschenbach, K.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Reinhart, F. K.

F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
[Crossref]

C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
[Crossref]

F. K. Reinhart, W. R. Sinclair, R. A. Logan, “Single heterostructure AlxGa1−xAs phase modulator with SnO2-doped In2O3 cladding layer,” Appl. Phys. Lett. 29, 21–23 (1976).
[Crossref]

F. Vasey, F. K. Reinhart, R. Houdré, J. M. Stauffer, “Continuous optical beam steering with an AlGaAs integrated phased array,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 314–316.

Roth, T. J.

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

Saito, Y.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Sasaki, H.

H. Sasaki, R. M. de la Rue, “Electro-optic multichannel waveguide deflector,” Electron. Lett. 13, 295–296 (1977).
[Crossref]

Saunier, P.

P. Saunier, C. S. Tsai, I. W. Yao, L. T. Nguyen, “Electrooptic phased-array light beam deflector with application to analog-to-digital conversion,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), pp. TuC2-1–TuC2-4.

Scherer, A.

A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
[Crossref]

Scifres, D.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

Sinclair, W. R.

F. K. Reinhart, W. R. Sinclair, R. A. Logan, “Single heterostructure AlxGa1−xAs phase modulator with SnO2-doped In2O3 cladding layer,” Appl. Phys. Lett. 29, 21–23 (1976).
[Crossref]

Sreenivas, K.

K. Sreenivas, T. S. Rao, A. Mansingh, “Preparation and characterization of RF sputtered indium tin oxide films,” J. Appl. Phys. 57, 384–387 (1985).
[Crossref]

Stauffer, J. M.

J. M. Stauffer, Y. Oppliger, F. Vassey, “Fabrication of optoelectronic devices on AlGaAs using electron beam lithography,” Microelectron. Eng 13, 193–196 (1991).
[Crossref]

F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
[Crossref]

F. Vasey, F. K. Reinhart, R. Houdré, J. M. Stauffer, “Continuous optical beam steering with an AlGaAs integrated phased array,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 314–316.

Streifer, W.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

Takamori, T.

T. Takamori, L. A. Coldren, J. L. Merz, “Angled etching of GaAs/AlGaAs by conventional Cl2 reactive ion etching,” Appl. Phys. Lett. 53, 2549–2551 (1988).
[Crossref]

Tamamura, T.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Tamir, T.

T. Tamir, Guided Wave Optoelectronics, Vol. 26 of Electronics and Photonics (Springer-Verlag, New York, 1988), pp. 7–88.
[Crossref]

Tsai, C. S.

P. Saunier, C. S. Tsai, I. W. Yao, L. T. Nguyen, “Electrooptic phased-array light beam deflector with application to analog-to-digital conversion,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), pp. TuC2-1–TuC2-4.

Vasey, F.

F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
[Crossref]

F. Vasey, F. K. Reinhart, R. Houdré, J. M. Stauffer, “Continuous optical beam steering with an AlGaAs integrated phased array,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 314–316.

Vassey, F.

J. M. Stauffer, Y. Oppliger, F. Vassey, “Fabrication of optoelectronic devices on AlGaAs using electron beam lithography,” Microelectron. Eng 13, 193–196 (1991).
[Crossref]

Waarts, R.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

Wang, C. A.

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

Welch, D. F.

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1987).

Wüthrich, C.

C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
[Crossref]

Yamashita, K.

H. Nagata, N. Komaba, K. Yamashita, “AlGaAs grating surface-emitting beam deflector with ridge structure,” IEEE Photon. Technol. Lett. 3, 222–224 (1991).
[Crossref]

Yao, I. W.

P. Saunier, C. S. Tsai, I. W. Yao, L. T. Nguyen, “Electrooptic phased-array light beam deflector with application to analog-to-digital conversion,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), pp. TuC2-1–TuC2-4.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yoshihara, H.

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Appl, Phys. Lett. (1)

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl, Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. Botez, M. Jansen, L. J. Mawst, G. Peterson, T. J. Roth, “Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers,” Appl. Phys. Lett. 58, 2070–2072 (1991).
[Crossref]

D. F. Welch, R. Waarts, D. Mehuys, R. Parke, D. Scifres, R. Craig, W. Streifer, “High power, diffraction limited, monolithically integrated master oscillator/power amplifier,” Appl. Phys. Lett. 57, 2064–2056 (1990).
[Crossref]

T. Takamori, L. A. Coldren, J. L. Merz, “Angled etching of GaAs/AlGaAs by conventional Cl2 reactive ion etching,” Appl. Phys. Lett. 53, 2549–2551 (1988).
[Crossref]

F. Vasey, F. K. Reinhart, J. M. Stauffer, R. Houdré, “Electro-optic AlGaAs spatial light deflector/modulator based on a grating phased array,” Appl. Phys. Lett. 58, 2874–2876 (1991).
[Crossref]

F. K. Reinhart, W. R. Sinclair, R. A. Logan, “Single heterostructure AlxGa1−xAs phase modulator with SnO2-doped In2O3 cladding layer,” Appl. Phys. Lett. 29, 21–23 (1976).
[Crossref]

Electron. Lett. (3)

C. Wüthrich, J. Faist, W. Baer, F. K. Reinhart, “Low-drive-voltage, low loss AlGaAs/GaAs 2 × 2 switch,” Electron. Lett. 24, 1047–1048 (1988).
[Crossref]

H. Sasaki, R. M. de la Rue, “Electro-optic multichannel waveguide deflector,” Electron. Lett. 13, 295–296 (1977).
[Crossref]

A. S. Gozdz, P. S. D. Lin, A. Scherer, S. F. Lee, “Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers,” Electron. Lett. 24, 123–125 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Ninomyia, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. 9, 791–795 (1973).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Nagata, N. Komaba, K. Yamashita, “AlGaAs grating surface-emitting beam deflector with ridge structure,” IEEE Photon. Technol. Lett. 3, 222–224 (1991).
[Crossref]

J. Appl. Phys. (1)

K. Sreenivas, T. S. Rao, A. Mansingh, “Preparation and characterization of RF sputtered indium tin oxide films,” J. Appl. Phys. 57, 384–387 (1985).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Nishida, M. Nako, T. Tamamura, A. Ozawa, Y. Saito, K. Nishimura, H. Yoshihara, “Synchrotron radiation lithography for DFB laser gratings,” Jpn. J. Appl. Phys. 28, 2333–2337 (1989).
[Crossref]

Microelectron. Eng (1)

J. M. Stauffer, Y. Oppliger, F. Vassey, “Fabrication of optoelectronic devices on AlGaAs using electron beam lithography,” Microelectron. Eng 13, 193–196 (1991).
[Crossref]

Other (10)

M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection (Dekker, New York, 1983).

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), p. 396.

R. G. Hunsperger, Integrated Optics: Theory and Technology, Vol. 33 of the Springer Series in Optical Sciences (Springer-Verlag, New York, 1984), pp. 59–63.

T. Tamir, Guided Wave Optoelectronics, Vol. 26 of Electronics and Photonics (Springer-Verlag, New York, 1988), pp. 7–88.
[Crossref]

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

P. Saunier, C. S. Tsai, I. W. Yao, L. T. Nguyen, “Electrooptic phased-array light beam deflector with application to analog-to-digital conversion,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), pp. TuC2-1–TuC2-4.

Optical Beam Steering Device—PHAROS, Technol. Inf. Sheet R0130 (Defence Technology Enterprise, London, 1988).

W. D. Goodhue, J. P. Donnelly, C. A. Wang, G. A. Lincoln, R. J. Bailey, G. D. Johnson, K. Rauschenbach, “Fabrication of monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode-laser arrays with over 50% differential quantum efficiencies,” in Digest of the IEEE/LEOS Summer Topical Meetings on Microfabrication for Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 1991), p. ThD3.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1987).

F. Vasey, F. K. Reinhart, R. Houdré, J. M. Stauffer, “Continuous optical beam steering with an AlGaAs integrated phased array,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 314–316.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Phased-array concept.

Fig. 2
Fig. 2

Phased-array implementation. Grating input coupler (1) couples a coherent beam into waveguide structure g. Grating output coupler (2) radiates into free space a beam d, whose phase front is determined by phasing electrodes (3). Lateral s and longitudinal p dimensions are not at the same scale.

Fig. 3
Fig. 3

Longitudinal cut through the phased array: (1) input-coupling grating, (2) output-coupling grating, (3) phasing electrode.

Fig. 4
Fig. 4

Two-dimensional grating structure and profile: n f , waveguide film index; n s , n c , cladding indices; t, slab thickness; h, rib height; w, width; Λ s , periodicity. Grating input (1) and output couplers (2) have a periodicity Λ p and a groove depth 2Δh. Typical numerical values are given in Table 1.

Fig. 5
Fig. 5

Schematic view of the measurement setup: double-arm goniometer (A1, A2) with rotation axis C. Laser beam L is polarized by polarizer P before impinging upon sample S. Incidence angle θ i is adjusted by rotating A1; detection angle θ0 is adjusted by rotating A2. i, incident beam; r, reflected beam; d, diffracted beam; D, detector.

Fig. 6
Fig. 6

Grating output coupler on rib waveguide array: measured far fields normalized in the (a) s and (b) p directions. Dashed curve, one single rib; dotted curve, two ribs spaced 100 μm; solid curve, 43 ribs spaced 12 μm. Grating lengths, b p ~ 650 μm; wavelength, 850 nm, TE polarized; output angle in the p direction, θ op ≈ 5°. No electrode loads the structure.

Fig. 7
Fig. 7

Far-field photographs of a, 1-element; b, 2-element, and c, 43-element grating arrays that correspond to the measured data of Fig. 6. The camera position was not kept constant between exposures a and b and c, which explains the apparent linewidth difference in the p direction. Diagonal fringes are due to interferences on the CCD detector window.

Fig. 8
Fig. 8

Normalized far field of a 43-element waveguide array measured in the (a) s and (b) p directions for TE (solid curve) and TM (dotted curve) polarizations.

Fig. 9
Fig. 9

Measured lateral far field of an array of 2 ribs spaced 100 μm for the (a) TE and (b) TM polarizations. Steering is obtained by applying a bias field on one of the ribs with an electrode of length L = 3.125 mm (see inset) while the other electrode remains grounded.

Fig. 10
Fig. 10

(a) Phase distribution across the array to obtain an arbitrary deflection angle; (b) corresponding sawtooth electrode geometry.

Fig. 11
Fig. 11

Normalized intensity distribution of a 43-element array measured in the s direction. Wavelength is 850 nm, TE polarized. Two interdigitated sawtooth electrodes load the structure. (a) Discrete beam steering is obtained with a sawtooth electrode voltage V = −6.3 V, corresponding to a 2π phase shift on a 3.125-mm-long electrode. The Fraunhofer condition is not fulfilled, as the sample-to-detector distance is only C D ¯ = 14 cm . (b) Fraunhofer far field measured at C D ¯ = 30 cm . A bias of −0.9 V is required for balancing the phase front tilt induced by a built-in structural phase gradient.

Fig. 12
Fig. 12

Measured intensity distribution normalized in the (a) s and (b) p directions. Dashed curve, single rib; dashed-dotted curve, 2 ribs spaced 125 μm; solid curve 50 ribs spaced 12.5 μm. Grating length, b p = 625 μm; wavelength, 900 nm, TE polarized. Output angle in the p direction is θ op = 6°. No electrode loads the structure.

Fig. 13
Fig. 13

(a) Phase distribution across the array for two deflection angles (solid and dashed lines), (b) corresponding phasing imposed by the superposed action of sawtooth and offset electrodes.

Fig. 14
Fig. 14

Electrode geometry required for achieving continuous steering with a reduced number of connections: (1) sawtooth electrode, (2) offset electrodes, (3) rib waveguides.

Fig. 15
Fig. 15

Measured modulation characteristics of the phasing section for TE and TM polarizations at a wavelength of 900 nm. Quadratic fit: ΔΦ/L = aV2 + bV; b = 0 for TM polarization.

Fig. 16
Fig. 16

Far field measured in the s direction for an array of 2 ribs spaced 125 μm (dotted curve) and an array of 50 ribs spaced 12.5 μm (solid curve). Various deflection angles (1)–(4) are obtained by individually addressing the offset and sawtooth electrodes (see text). Wavelength is 900 nm, TE polarized.

Tables (4)

Tables Icon

Table 1 Refractive Indices Calculated for a Typical Waveguide Structure at λ = 850 nma

Tables Icon

Table 2 Comparison of Measured Far-Field Parameters (Section 6) with Theoretical Values Derived In Section 5a

Tables Icon

Table 3 Comparison of Measured Far-Field Parameters (Section 7) with Theoretical Values Derived in Section 5a

Tables Icon

Table 4 Characteristic Features of the Continuous Deflectora

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C D ¯ > b 2 / λ .
θ o s = arcsin [ m ( λ / Λ s ) + sin ( θ i s ) ] ,
θ = arctan ( X / C D ¯ ) = arctan [ ( X / X 0 ) tan θ o s ] θ o s ( X / X 0 ) .
θ o s = arcsin ( m s λ / Λ s ) ,             m s = 0 , ± 1 , ± 2 , , θ o p = arcsin [ N eff - ( m p λ / Λ p ) ] ,             m p = 1 , 2 , ,
I ( θ ) sin 2 β β 2 ,             β = π b sin θ λ .
Δ θ z = 2 arcsin ( λ / b ) , Δ θ FWHM = 0.443 Δ θ z .
EF s = exp ( - 2 θ s 2 / θ y 2 ) .
Δ θ o p , slab - rib = θ o p slab - θ o p rib Δ N eff = N eff slab - N eff rib = - 1.1 mrad ,
Δ θ o p , TE - TM = θ o p TE - θ o p TM Δ N eff = N eff TE - N eff TM = 1.9 mrad ,
Δ Φ = 2 π L λ Δ N eff ,
I m = ± 1 I m = 0 = 39 %

Metrics