Abstract

Single-crystal sapphire fibers are produced by the laser heated pedestal growth technique. The fibers have attenuation coefficients of less than 2 dB/m at the Er:YAG laser wavelength of 2.94 μm and are used to deliver over 600 mJ of Er:YAG laser energy. Mechanical testing of these fibers and the sapphire fibers produced by the edge-defined, film-fed growth technique results in a measured 0.4% strain to failure when testing is done under a 4-point load. Teflon-FEP (perfluorinated ethylene propylene) is applied to sapphire fibers as a cladding. The cladding is extremely effective in preventing leakage of energy from the fibers into absorbing environments that may surround the fiber.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Labelle, “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
    [CrossRef]
  2. J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Rep. NASA-CR-120948 (NASA, Greenbelt, Md., 1972).
  3. D. B. Gasson, B. Cockayne, J. Mat. Science 5, 100–104 (1970).
    [CrossRef]
  4. M. A. Saifi, B. Dubois, E. M. Vogel, “Laser heated growth and zone refining of single crystal fibers,” presented at the International Ceramics Conference, Milan, 1985.
  5. D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989).
    [CrossRef]
  6. G. N. Merberg, J. A. Harrington, “Single crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1991).
  7. M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988).
    [CrossRef]
  8. J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).
  9. T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
    [CrossRef]
  10. C. A. Burrus, L. A. Coldren, “Growth of single crystal sapphire clad ruby fibers,” Appl. Phys. Lett. 31, 383–384 (1977).
    [CrossRef]
  11. R. L. Byer, M. M. Fejer, “Apparatus for growing crystal fibers,” U.S. patent4,421,721 (20December1983).
  12. D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
    [CrossRef]
  13. D. A. Pinnow, T. C. Rich, “Development of a calorimetric method for making precision optical absorption measurements,” Appl. Opt. 12, 984–992 (1973).
    [CrossRef] [PubMed]
  14. M. Hass, J. W. Davisson, H. B. Rosenstock, J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14, 1128–1130 (1975).
    [CrossRef] [PubMed]
  15. Saphikon, Inc., Milford, New Hampshire.
  16. J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.
  17. G. J. Nelson, M. J. Matthewson, presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, Oh., 1991.
  18. R. W. Waynant, S. Oshry, M. Fink, “Infrared measurements of sapphire fibers for medical applications,” Appl. Opt. 32, 390–392 (1993).
    [CrossRef] [PubMed]
  19. J. McClure, “Optical spectra of transition-metal ions in corrundum,” J. Chem. Phys. 36, 2757 (1962).
    [CrossRef]
  20. B. D. Evans, M. Staplebroeck, “Optical vibronic absorbance spectra in 14.8 MeV neutron damaged sapphire,” Solid State Commun. 33, 765–770 (1980).
    [CrossRef]
  21. E. Kotomin, University of Latvia, Riga, Latvia (personal communication).
  22. T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975).
    [CrossRef]
  23. G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).
  24. L. L. Blyler, B. R. Eichenbaum, H. Schonhorn, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 299–341.
  25. A. G. Evans, “A method for evaluating the time dependent failure characteristics of brittle materials and its application to polycrystalline alumina,” J. Mat. Sci. 7, 1137–1146 (1972).
    [CrossRef]
  26. J. B. Wachtman, D. G. Lam, “Young’s modulus of various refractory materials as a function of temperature,” J. Am. Ceram. Soc. 42, 254–260 (1959).
    [CrossRef]
  27. H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).
  28. S. Sudo, I. Yokohama, “Single-crystal fibers and their device applications,” Jpn. Cryst. Growth Soc. J. 17, 211–218 (1990).

1993 (1)

1991 (1)

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).

1990 (1)

S. Sudo, I. Yokohama, “Single-crystal fibers and their device applications,” Jpn. Cryst. Growth Soc. J. 17, 211–218 (1990).

1989 (1)

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

1988 (1)

M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988).
[CrossRef]

1983 (1)

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

1981 (1)

J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).

1980 (2)

H. E. Labelle, “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
[CrossRef]

B. D. Evans, M. Staplebroeck, “Optical vibronic absorbance spectra in 14.8 MeV neutron damaged sapphire,” Solid State Commun. 33, 765–770 (1980).
[CrossRef]

1977 (1)

C. A. Burrus, L. A. Coldren, “Growth of single crystal sapphire clad ruby fibers,” Appl. Phys. Lett. 31, 383–384 (1977).
[CrossRef]

1975 (2)

M. Hass, J. W. Davisson, H. B. Rosenstock, J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14, 1128–1130 (1975).
[CrossRef] [PubMed]

T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975).
[CrossRef]

1973 (1)

1972 (2)

A. G. Evans, “A method for evaluating the time dependent failure characteristics of brittle materials and its application to polycrystalline alumina,” J. Mat. Sci. 7, 1137–1146 (1972).
[CrossRef]

T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
[CrossRef]

1970 (1)

D. B. Gasson, B. Cockayne, J. Mat. Science 5, 100–104 (1970).
[CrossRef]

1962 (1)

J. McClure, “Optical spectra of transition-metal ions in corrundum,” J. Chem. Phys. 36, 2757 (1962).
[CrossRef]

1959 (1)

J. B. Wachtman, D. G. Lam, “Young’s modulus of various refractory materials as a function of temperature,” J. Am. Ceram. Soc. 42, 254–260 (1959).
[CrossRef]

Babiskin, J.

Blyler, L. L.

L. L. Blyler, B. R. Eichenbaum, H. Schonhorn, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 299–341.

Bobbs, B.

J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).

Braunstein, M. A.

J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).

Braunstein, R.

J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).

Burk, M. J.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Burrus, C. A.

C. A. Burrus, L. A. Coldren, “Growth of single crystal sapphire clad ruby fibers,” Appl. Phys. Lett. 31, 383–384 (1977).
[CrossRef]

Byer, R. L.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

R. L. Byer, M. M. Fejer, “Apparatus for growing crystal fibers,” U.S. patent4,421,721 (20December1983).

Cockayne, B.

D. B. Gasson, B. Cockayne, J. Mat. Science 5, 100–104 (1970).
[CrossRef]

Colaizzi, J.

J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.

Coldren, L. A.

C. A. Burrus, L. A. Coldren, “Growth of single crystal sapphire clad ruby fibers,” Appl. Phys. Lett. 31, 383–384 (1977).
[CrossRef]

Davisson, J. W.

Dubois, B.

M. A. Saifi, B. Dubois, E. M. Vogel, “Laser heated growth and zone refining of single crystal fibers,” presented at the International Ceramics Conference, Milan, 1985.

Eichenbaum, B. R.

L. L. Blyler, B. R. Eichenbaum, H. Schonhorn, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 299–341.

Evans, A. G.

A. G. Evans, “A method for evaluating the time dependent failure characteristics of brittle materials and its application to polycrystalline alumina,” J. Mat. Sci. 7, 1137–1146 (1972).
[CrossRef]

Evans, B. D.

B. D. Evans, M. Staplebroeck, “Optical vibronic absorbance spectra in 14.8 MeV neutron damaged sapphire,” Solid State Commun. 33, 765–770 (1980).
[CrossRef]

Feigelson, R. S.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).

Fejer, M. M.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

R. L. Byer, M. M. Fejer, “Apparatus for growing crystal fibers,” U.S. patent4,421,721 (20December1983).

Fink, M.

Fisher, C. F.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Gasson, D. B.

D. B. Gasson, B. Cockayne, J. Mat. Science 5, 100–104 (1970).
[CrossRef]

Haggerty, J. S.

J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Rep. NASA-CR-120948 (NASA, Greenbelt, Md., 1972).

Harari, E.

T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975).
[CrossRef]

Harrington, J. A.

J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).

G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).

G. N. Merberg, J. A. Harrington, “Single crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1991).

Hass, M.

Iqbal, T.

J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.

Joseph, R. I.

M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988).
[CrossRef]

Jundt, D. H.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

Kotomin, E.

E. Kotomin, University of Latvia, Riga, Latvia (personal communication).

Labelle, H. E.

H. E. Labelle, “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
[CrossRef]

Lam, D. G.

J. B. Wachtman, D. G. Lam, “Young’s modulus of various refractory materials as a function of temperature,” J. Am. Ceram. Soc. 42, 254–260 (1959).
[CrossRef]

Levin, K. H.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Matthewson, M. J.

J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.

G. J. Nelson, M. J. Matthewson, presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, Oh., 1991.

McClure, J.

J. McClure, “Optical spectra of transition-metal ions in corrundum,” J. Chem. Phys. 36, 2757 (1962).
[CrossRef]

Merberg, G. N.

G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).

G. N. Merberg, J. A. Harrington, “Single crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1991).

Nelson, G. J.

G. J. Nelson, M. J. Matthewson, presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, Oh., 1991.

Oshry, S.

Perrotta, A. J.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).

Pinnow, D. A.

Rich, T. C.

Rosenstock, H. B.

Royce, B. S. H.

T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975).
[CrossRef]

Russel, T. J.

T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975).
[CrossRef]

Saifi, M. A.

M. A. Saifi, B. Dubois, E. M. Vogel, “Laser heated growth and zone refining of single crystal fibers,” presented at the International Ceramics Conference, Milan, 1985.

Schonhorn, H.

L. L. Blyler, B. R. Eichenbaum, H. Schonhorn, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 299–341.

Shahriari, M. R.

G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).

J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.

Sigel, G. H.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).

Staplebroeck, M.

B. D. Evans, M. Staplebroeck, “Optical vibronic absorbance spectra in 14.8 MeV neutron damaged sapphire,” Solid State Commun. 33, 765–770 (1980).
[CrossRef]

Sudo, S.

S. Sudo, I. Yokohama, “Single-crystal fibers and their device applications,” Jpn. Cryst. Growth Soc. J. 17, 211–218 (1990).

Thomas, M. E.

M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988).
[CrossRef]

Tran, D. C.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Tropf, W. J.

M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988).
[CrossRef]

Vogel, E. M.

M. A. Saifi, B. Dubois, E. M. Vogel, “Laser heated growth and zone refining of single crystal fibers,” presented at the International Ceramics Conference, Milan, 1985.

Wachtman, J. B.

J. B. Wachtman, D. G. Lam, “Young’s modulus of various refractory materials as a function of temperature,” J. Am. Ceram. Soc. 42, 254–260 (1959).
[CrossRef]

Waynant, R. W.

Wu, H. F.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).

Yokohama, I.

S. Sudo, I. Yokohama, “Single-crystal fibers and their device applications,” Jpn. Cryst. Growth Soc. J. 17, 211–218 (1990).

Adv. Ceram. (1)

J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).

Appl. Opt. (3)

Appl. Optics (1)

M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988).
[CrossRef]

Appl. Phys. Lett. (3)

T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
[CrossRef]

C. A. Burrus, L. A. Coldren, “Growth of single crystal sapphire clad ruby fibers,” Appl. Phys. Lett. 31, 383–384 (1977).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

Electron. Lett. (1)

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. B. Wachtman, D. G. Lam, “Young’s modulus of various refractory materials as a function of temperature,” J. Am. Ceram. Soc. 42, 254–260 (1959).
[CrossRef]

J. Chem. Phys. (1)

J. McClure, “Optical spectra of transition-metal ions in corrundum,” J. Chem. Phys. 36, 2757 (1962).
[CrossRef]

J. Cryst. Growth (1)

H. E. Labelle, “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
[CrossRef]

J. Mat. Sci. (1)

A. G. Evans, “A method for evaluating the time dependent failure characteristics of brittle materials and its application to polycrystalline alumina,” J. Mat. Sci. 7, 1137–1146 (1972).
[CrossRef]

J. Mat. Science (1)

D. B. Gasson, B. Cockayne, J. Mat. Science 5, 100–104 (1970).
[CrossRef]

Jpn. Cryst. Growth Soc. J. (1)

S. Sudo, I. Yokohama, “Single-crystal fibers and their device applications,” Jpn. Cryst. Growth Soc. J. 17, 211–218 (1990).

Light Metal Age (1)

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).

Solid State Commun. (1)

B. D. Evans, M. Staplebroeck, “Optical vibronic absorbance spectra in 14.8 MeV neutron damaged sapphire,” Solid State Commun. 33, 765–770 (1980).
[CrossRef]

Other (10)

E. Kotomin, University of Latvia, Riga, Latvia (personal communication).

G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).

L. L. Blyler, B. R. Eichenbaum, H. Schonhorn, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 299–341.

G. N. Merberg, J. A. Harrington, “Single crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1991).

M. A. Saifi, B. Dubois, E. M. Vogel, “Laser heated growth and zone refining of single crystal fibers,” presented at the International Ceramics Conference, Milan, 1985.

J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Rep. NASA-CR-120948 (NASA, Greenbelt, Md., 1972).

R. L. Byer, M. M. Fejer, “Apparatus for growing crystal fibers,” U.S. patent4,421,721 (20December1983).

Saphikon, Inc., Milford, New Hampshire.

J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.

G. J. Nelson, M. J. Matthewson, presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, Oh., 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical attenuation of current state-of-the-art sapphire fiber compared with theoretical losses. The scattering data on the V curve were calculated from Brillouin theory, and the infrared absorption data were extrapolated from data taken by Thomas et al.7 The intrinsic loss at 2.94 μm is 0.13 dB/m.

Fig. 2
Fig. 2

Schematic diagram of the reflaxicon used to deliver CO2 radiation to the tip of a sapphire source rod for LHPG.

Fig. 3
Fig. 3

Attenuation spectrum of a typical LHPG sapphire fiber grown at Rutgers. The circles represent laser insertion loss measurements made with He–Ne lasers and an Er:YAG laser. The solid curves represent spectrometer data acquired with a commercial FTIR spectrometer and a Xe arc lamp spectrometer.

Fig. 4
Fig. 4

Scattering in LHPG sapphire fiber as a function of wavelength. This type of scattering is associated with scattering centers that are small with respect to the wavelength of the transmitted light. High spatial frequency diameter fluctuations and microvoids are proposed as the source of the high extrinsic scattering.

Fig. 5
Fig. 5

Absorbance spectra of a 1-mm-thick sample of LHPG sapphire with anomalously high visible absorption before and after a 1-h anneal at 1000 °C in air.

Fig. 6
Fig. 6

Absorbance spectra of LHPG sapphire fibers grown at Rutgers at various rates. The growth rate dependence of F and F+ center formation is clear. Sample thicknesses were 1 mm.

Fig. 7
Fig. 7

Luminescence spectra of LHPG sapphire grown at Rutgers University at 2.28 mm/min. The data clearly show the presence of F and F+ centers as well as trivalent chromium.

Fig. 8
Fig. 8

Absorbance of the F and F+ centers in LHPG sapphire before and after a thermal anneal to 375 °C in air. The fiber was grown at 2.28 mm/min. Sample thickness was 1 mm.

Fig. 9
Fig. 9

Scattering in an EFG sapphire fiber as a function of wavelength. This type of scattering is associated with Mie scattering from optically thick scattering centers of the dimensional order of the transmitted light.

Fig. 10
Fig. 10

200× optical micrograph of a 280-μm sapphire fiber grown by the EFG process. The bubbles are present because of molten zone instabilities caused by the rapid growth rate (12–20 mm/min).

Fig. 11
Fig. 11

Infrared absorbance spectrum of Teflon-FEP 100, measured on a 1-mm-thick sample with an FTIR spectrometer.

Fig. 12
Fig. 12

Infrared attenuation spectra of a 1-m length of sapphire fiber grown at Rutgers University by the LHPG technique before and after application of a Teflon-FEP 100 cladding.

Fig. 13
Fig. 13

Weibull probability plots of EFG and LHPG sapphire fibers of various diameters broken under 4-point load in liquid nitrogen.

Fig. 14
Fig. 14

Weibull probability plots of EFG and LHPG sapphire fibers of various diameters broken under 4-point load in air at room temperature.

Tables (1)

Tables Icon

Table 1 Results of Mechanical Testing of EFG and LHPG Sapphire Fibers of Various Sizes at Room Temperature and at 77 Ka

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α SC = 434 I SC I t l ( dB / m ) ,
α a = ( 2 n n 2 + 1 ) m c p ( d T / d t ) l P ,
α t = α a + α SC .
= 3 r d 4 a 2 ,
R = r / .
E = 55.1 - 8.937 × 10 - 3 T ,

Metrics